TY - JOUR
T1 - Non-modal three-dimensional optimal perturbation growth in thermally stratified mixing layers
AU - Vitoshkin, Helena
AU - Gelfgat, Alexander
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1
Y1 - 2021/1
N2 - A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full threedimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found that the transient growth of two-dimensional disturbances diminishes with the strengthening of stratification, while three-dimensional disturbances cause significant non-modal growth, even for a strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and does not necessarily weaken with the increase of the Richardson number. The optimal perturbation consists of two waves traveling in opposite directions. Compared to the two-dimensional transient growth, the three-dimensional growth is found to be larger, taking place at shorter times. The nonmodal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence of the structures determined by the transient growth analysis.
AB - A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full threedimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found that the transient growth of two-dimensional disturbances diminishes with the strengthening of stratification, while three-dimensional disturbances cause significant non-modal growth, even for a strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and does not necessarily weaken with the increase of the Richardson number. The optimal perturbation consists of two waves traveling in opposite directions. Compared to the two-dimensional transient growth, the three-dimensional growth is found to be larger, taking place at shorter times. The nonmodal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence of the structures determined by the transient growth analysis.
KW - Holmboe instability
KW - Kelvin-helmholtz instability
KW - Non-modal instability
KW - Stratified mixing layer
UR - http://www.scopus.com/inward/record.url?scp=85108141172&partnerID=8YFLogxK
U2 - 10.3390/fluids6010037
DO - 10.3390/fluids6010037
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85108141172
SN - 2311-5521
VL - 6
JO - Fluids
JF - Fluids
IS - 1
M1 - 37
ER -