Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

Min Hao Wong, Juan P. Giraldo, Seon Yeong Kwak, Volodymyr B. Koman, Rosalie Sinclair, Tedrick Thomas Salim Lew, Gili Bisker, Pingwei Liu, Michael S. Strano

Research output: Contribution to journalArticlepeer-review

263 Scopus citations

Abstract

Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors - single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal - embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

Original languageEnglish
Pages (from-to)264-272
Number of pages9
JournalNature Materials
Volume16
Issue number2
DOIs
StatePublished - 1 Feb 2017
Externally publishedYes

Funding

FundersFunder number
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung162149
Not added1103600

    Fingerprint

    Dive into the research topics of 'Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics'. Together they form a unique fingerprint.

    Cite this