NF-κB activity during pancreas development regulates adult β-cell mass by modulating neonatal β-cell proliferation and apoptosis

Dror Sever, Anat Hershko-Moshe, Rohit Srivastava, Roy Eldor, Daniel Hibsher, Hadas Keren-Shaul, Ido Amit, Federico Bertuzzi, Lars Krogvold, Knut Dahl-Jørgensen, Iddo Z. Ben-Dov, Limor Landsman, Danielle Melloul*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

NF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.

Original languageEnglish
Article number2
JournalCell Death Discovery
Volume7
Issue number1
DOIs
StatePublished - Jun 2021

Funding

FundersFunder number
Israel Ministry of Health3-00000-3750
FP7 Ideas: European Research Council
European Commission036903
European Commission
Ministry of Health, State of Israel

    Fingerprint

    Dive into the research topics of 'NF-κB activity during pancreas development regulates adult β-cell mass by modulating neonatal β-cell proliferation and apoptosis'. Together they form a unique fingerprint.

    Cite this