TY - JOUR

T1 - New findings for the old problem

T2 - Exact solutions for domain walls in coupled real Ginzburg-Landau equations

AU - Malomed, Boris A.

N1 - Publisher Copyright:
© 2021 Elsevier B.V.

PY - 2022/1/17

Y1 - 2022/1/17

N2 - This work reports new exact solutions for domain-wall (DW) states produced by a system of coupled real Ginzburg-Landau (GL) equations which model patterns in thermal convection, optics, and Bose-Einstein condensates (BECs). An exact solution for symmetric DW was known for a single value of the cross-interaction coefficient, G=3 (defined so that its self-interaction counterpart is 1). Here an exact asymmetric DW is obtained for the system in which the diffusion term is absent in one component. It exists for all G>1. Also produced is an exact solution for DW in the symmetric real-GL system which includes linear coupling. In addition, an effect of a trapping potential on the DW is considered, which is relevant to the case of BEC. In a system of three GL equations, an exact solution is obtained for a composite state including a two-component DW and a localized state in the third component. Bifurcations which create two lowest composite states are identified too. Lastly, exact solutions are found for the system of real GL equations for counterpropagating waves, which represent a sink or source of the waves, as well as for a system of three equations which includes a standing localized component.

AB - This work reports new exact solutions for domain-wall (DW) states produced by a system of coupled real Ginzburg-Landau (GL) equations which model patterns in thermal convection, optics, and Bose-Einstein condensates (BECs). An exact solution for symmetric DW was known for a single value of the cross-interaction coefficient, G=3 (defined so that its self-interaction counterpart is 1). Here an exact asymmetric DW is obtained for the system in which the diffusion term is absent in one component. It exists for all G>1. Also produced is an exact solution for DW in the symmetric real-GL system which includes linear coupling. In addition, an effect of a trapping potential on the DW is considered, which is relevant to the case of BEC. In a system of three GL equations, an exact solution is obtained for a composite state including a two-component DW and a localized state in the third component. Bifurcations which create two lowest composite states are identified too. Lastly, exact solutions are found for the system of real GL equations for counterpropagating waves, which represent a sink or source of the waves, as well as for a system of three equations which includes a standing localized component.

KW - Grain boundary

KW - Linear coupling

KW - Lyapunov functional

KW - Pattern formation

KW - Rayleigh-Bénard convection

KW - Thomas-Fermi approximation

UR - http://www.scopus.com/inward/record.url?scp=85119256946&partnerID=8YFLogxK

U2 - 10.1016/j.physleta.2021.127802

DO - 10.1016/j.physleta.2021.127802

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:85119256946

SN - 0375-9601

VL - 422

JO - Physics Letters, Section A: General, Atomic and Solid State Physics

JF - Physics Letters, Section A: General, Atomic and Solid State Physics

M1 - 127802

ER -