New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants

I. Itenberg*, V. Kharlamov, E. Shustin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We consider ℙ1 × ℙ1 equipped with the complex conjugation (x, y) → (ȳ,x̄) and blown up in at most two real or two complex conjugate points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov-Witten invariants.

Original languageEnglish
Pages (from-to)65-73
Number of pages9
JournalProceedings of the Steklov Institute of Mathematics
Volume258
Issue number1
DOIs
StatePublished - Sep 2007

Funding

FundersFunder number
Hermann Minkowski Minerva Center for Geometry
Université Louis Pasteur
Agence Nationale de la Recherche
Ministère des Affaires EtrangèresANR-05-0053-01
Israel Science Foundation465/04
Tel Aviv University
Ministry of Science and Technology, Israel

    Fingerprint

    Dive into the research topics of 'New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants'. Together they form a unique fingerprint.

    Cite this