Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning

DUNE Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.

Original languageEnglish
Article number697
JournalEuropean Physical Journal C
Volume85
Issue number6
DOIs
StatePublished - Jun 2025

Funding

FundersFunder number
Fundação para a Ciência e a Tecnologia
National Science Foundation
Institut National de Physique Nucléaire et de Physique des Particules
Science and Technology Facilities Council
H2020 Marie Skłodowska-Curie Actions
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Ministerio de Ciencia e Innovación
South Korea
Spine Education and Research Institute
HORIZON EUROPE Framework Programme
Centre National de la Recherche Scientifique
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Conselho Nacional de Desenvolvimento Científico e Tecnológico
NRF
European Commission
U.S. Department of Energy
Fundação de Amparo à Pesquisa do Estado de São Paulo
Fundação de Amparo à Pesquisa do Estado de Goiás
Natural Sciences and Engineering Research Council of Canada
Fermilab
Xunta de Galicia
CEA
Office of Science
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
NextGenerationEU
Royal Society
European Regional Development Fund
Generalitat Valenciana
CERN
Ministerstvo Školství, Mládeže a Tělovýchovy
Istituto Nazionale di Fisica Nucleare
UK Research and Innovation
Fermi Research Alliance, LLCDE-AC02-07CH11359

    Fingerprint

    Dive into the research topics of 'Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning'. Together they form a unique fingerprint.

    Cite this