TY - JOUR
T1 - Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats
AU - Strauss, I.
AU - Lev-Tov, A.
PY - 2003/2/1
Y1 - 2003/2/1
N2 - Projections of sacrocaudal afferents (SCA) onto lumbar pattern generators were studied in isolated spinal cords of neonatal rats. A locomotor-like pattern could be produced by SCA stimulation in the majority of the preparations. The SCA-induced lumbar rhythm was abolished after blocking synaptic transmission in the sacrococcygeal (SC) cord by bathing its segments in a low-calcium, high-magnesium artificial cerebrospinal fluid and restored when the synaptic block was alleviated by local application of calcium onto specific SC segments prior to SCA stimulation. Thus the SCA evoked lumbar rhythm involves synaptic activation of relay neurons in the SC cord. Functional activation of these relays depends on non-N-methyl-D-aspartate (NMDA) receptors because the lumbar rhythm was abolished when the non-NMDA receptor antagonist CNQX was added to the SC cord. By contrast, pharmacological block of the rhythmicity in the SC cord by specific antagonists of NMDA receptors and α1 and α2 adrenoceptors did not impair the SCA-induced lumbar rhythm. Midsagittal splitting experiments of parts of the SC and lumbar cord revealed that crossed and uncrossed ascending/propriospinal pathways are coactivated by SCA stimulation. We suggest that these pathways ascend onto the thoracolumbar cord through the lateral, ventrolateral, and ventral funiculi, because a complete block of the lumbar rhythm could only be obtained with a bilateral interruption of all of these funiculi. The relevance of our findings to the neural control of the rhythmogenic networks in the spinal cord is discussed.
AB - Projections of sacrocaudal afferents (SCA) onto lumbar pattern generators were studied in isolated spinal cords of neonatal rats. A locomotor-like pattern could be produced by SCA stimulation in the majority of the preparations. The SCA-induced lumbar rhythm was abolished after blocking synaptic transmission in the sacrococcygeal (SC) cord by bathing its segments in a low-calcium, high-magnesium artificial cerebrospinal fluid and restored when the synaptic block was alleviated by local application of calcium onto specific SC segments prior to SCA stimulation. Thus the SCA evoked lumbar rhythm involves synaptic activation of relay neurons in the SC cord. Functional activation of these relays depends on non-N-methyl-D-aspartate (NMDA) receptors because the lumbar rhythm was abolished when the non-NMDA receptor antagonist CNQX was added to the SC cord. By contrast, pharmacological block of the rhythmicity in the SC cord by specific antagonists of NMDA receptors and α1 and α2 adrenoceptors did not impair the SCA-induced lumbar rhythm. Midsagittal splitting experiments of parts of the SC and lumbar cord revealed that crossed and uncrossed ascending/propriospinal pathways are coactivated by SCA stimulation. We suggest that these pathways ascend onto the thoracolumbar cord through the lateral, ventrolateral, and ventral funiculi, because a complete block of the lumbar rhythm could only be obtained with a bilateral interruption of all of these funiculi. The relevance of our findings to the neural control of the rhythmogenic networks in the spinal cord is discussed.
UR - http://www.scopus.com/inward/record.url?scp=0037321235&partnerID=8YFLogxK
U2 - 10.1152/jn.00716.2002
DO - 10.1152/jn.00716.2002
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12574455
AN - SCOPUS:0037321235
SN - 0022-3077
VL - 89
SP - 773
EP - 784
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 2
ER -