Near-Optimal Multi-Robot Motion Planning with Finite Sampling

Dror Dayan, Kiril Solovey*, Marco Pavone, Dan Halperin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

An underlying structure in several sampling-based methods for continuous multirobot motion planning (MRMP) is the tensor roadmap, which emerges from combining multiple probabilistic roadmap (PRM) graphs constructed for the individual robots via a tensor product. We study the conditions under which the tensor roadmap encodes a near-optimal solution for MRMP - satisfying these conditions implies near optimality for a variety of popular planners, including dRRT*, and the discrete methods M∗ and conflict-based search, when applied to the continuous domain. We develop the first finite-sample analysis of this kind, which specifies the number of samples, their deterministic distribution, and magnitude of the connection radii that should be used by each individual PRM graph, to guarantee near-optimality using the tensor roadmap. This significantly improves upon a previous asymptotic analysis, wherein the number of samples tends to infinity. Our new finite sample-size analysis supports guaranteed high-quality solutions in practice within finite time. To achieve our new result, we first develop a sampling scheme, which we call the staggered grid, for finite-sample motion planning for individual robots, which requires significantly fewer samples than previous work. We then extend it to the much more involved MRMP setting, which requires to account for interactions among multiple robots. Finally, we report on a few experiments that serve as a verification of our theoretical findings and raise interesting questions for further investigation.

Original languageEnglish
Pages (from-to)3422-3436
Number of pages15
JournalIEEE Transactions on Robotics
Volume39
Issue number5
DOIs
StatePublished - 1 Oct 2023

Keywords

  • Motion planning
  • multi-agent systems
  • multi-robot systems
  • sampling methods

Fingerprint

Dive into the research topics of 'Near-Optimal Multi-Robot Motion Planning with Finite Sampling'. Together they form a unique fingerprint.

Cite this