National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel

Itay Bar-Or, Victoria Indenbaum, Merav Weil, Michal Elul, Nofar Levi, Irina Aguvaev, Zvi Cohen, Virginia Levy, Roberto Azar, Batya Mannasse, Rachel Shirazi, Efrat Bucris, Orna Mor, Alin Sela Brown, Danit Sofer, Neta S. Zuckerman, Ella Mendelson, Oran Erster*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February–March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.

Original languageEnglish
Article number1229
Issue number6
StatePublished - Jun 2022


  • RT-qPCR
  • SARS-CoV-2
  • differential PCR
  • variant B.1.1.7 (Alpha)
  • wastewater surveillance


Dive into the research topics of 'National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel'. Together they form a unique fingerprint.

Cite this