Narrow-band microcavity waveguides in photonic crystals

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

A novel device, formed by a widely spaced periodic array of defects in a photonic bandgap crystal, is studied with the goal of designing a waveguide with a prescribed narrow bandwidth. Tunneling of radiation between the defect sites allows wave propagation along the line of the defects. An analytical study based on the weakly coupled cavity model is performed, and the dispersion relation v(b) of the new waveguide is derived. The frequency shift and the band structure of the periodic defect waveguide are linked by an analytic relationship to the distance between the defect sites and therefore can be tuned by varying the latter. Sections of such waveguides can be employed as ultra-narrow-band filters in optical routing devices. Numerical simulations demonstrate the performances of this new device and support the analytical predictions.

Original languageEnglish
Pages (from-to)2799-2805
Number of pages7
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume18
Issue number11
DOIs
StatePublished - Nov 2001

Fingerprint

Dive into the research topics of 'Narrow-band microcavity waveguides in photonic crystals'. Together they form a unique fingerprint.

Cite this