NAM - Unsupervised cross-domain image mapping without cycles or GANs

Yedid Hoshen, Lior Wolf

Research output: Contribution to conferencePaperpeer-review

Abstract

Several methods were recently proposed for Unsupervised Domain Mapping, which is the task of translating images between domains without prior knowledge of correspondences. Current approaches suffer from an instability in training due to relying on GANs which are powerful but highly sensitive to hyper-parameters and suffer from mode collapse. In addition, most methods rely heavily on “cycle” relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: NAM. NAM relies on a pre-trained generative model of the source domain, and aligns each target image with an image sampled from the source distribution while jointly optimizing the domain mapping function. Experiments are presented validating the effectiveness of our method.

Original languageEnglish
StatePublished - 2018
Event6th International Conference on Learning Representations, ICLR 2018 - Vancouver, Canada
Duration: 30 Apr 20183 May 2018

Conference

Conference6th International Conference on Learning Representations, ICLR 2018
Country/TerritoryCanada
CityVancouver
Period30/04/183/05/18

Fingerprint

Dive into the research topics of 'NAM - Unsupervised cross-domain image mapping without cycles or GANs'. Together they form a unique fingerprint.

Cite this