Multiplexing packets with arbitrary deadlines in bounded buffers

Yossi Azar, Nir Levy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We study the online problem of multiplexing packets with arbitrary deadlines in bounded multi-buffer switch. In this model, a switch consists of m input buffers each with bounded capacity B and one output port. Each arriving packet is associated with a value and a deadline that specifies the time limit till the packet can be transmitted. At each time step the switch can select any non-empty buffer and transmit one packet from that buffer. In the preemptive model, stored packets may be preempted from their buffers due to lack of buffer space or discarded due to the violation of the deadline constraints. If preemption is not allowed, every packet accepted and stored in the buffer must be transmitted before its deadline has expired. The goal is to maximize the benefit of the packets transmitted by their deadlines. To date, most models for packets with deadlines assumed a single buffer. To the best of our knowledge this is the first time a bounded multi-buffer switch is used with arbitrary deadline constraints. Our main result is a 9.82-competitive deterministic algorithm for packets with arbitrary values and deadlines. Note that the greedy algorithm is not competitive. For the non-preemptive model we present a 2-competitive deterministic algorithm for the unit value packets. For arbitrary values'we present a randomized algorithm whose competitiveness is logarithmic in the ratio between the largest and the smallest value of the packets in the sequence.

Original languageEnglish
Title of host publicationBiomedical Simulation - Third International Symposium, ISBMS 2006, Proceedings
PublisherSpringer Verlag
Number of pages12
ISBN (Print)354035753X, 9783540357537
StatePublished - 2006
Event10th Scandinavian Workshop on Algorithm Theory, SWAT 2006 - Riga, Latvia
Duration: 6 Jul 20068 Jul 2006

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume4059 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference10th Scandinavian Workshop on Algorithm Theory, SWAT 2006


Dive into the research topics of 'Multiplexing packets with arbitrary deadlines in bounded buffers'. Together they form a unique fingerprint.

Cite this