TY - JOUR
T1 - Multiplexed ultrasound beam summation for side lobe reduction
AU - Ilovitsh, Asaf
AU - Ilovitsh, Tali
AU - Ferrara, Katherine W.
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Two-way focusing, which relies on sweeping a focused beam across a field of view, is the conventional method for performing high-quality ultrasound imaging. Side lobes resulting from diffraction reduce the image contrast, thus degrade the image quality. In this paper, we present a new method for beam shaping the transmitted ultrasound waveform in order to reduce side lobes and improve image quality. The beam shaping is achieved by transmitting two different waveforms that are interlaced between the odd and even elements. One waveform generates a standard diffraction-limited single focus, and the second waveform generates two foci at the same focal depth as the single focus. The distance between the two foci is selected such that they will destructively interfere with the first order side lobes of the single focus, effectively eliminating these side lobes. A 7.5 dB side lobe reduction was measured experimentally at a depth of 60 mm, using a phased array transducer with a center frequency of 3 MHz. This real-time method utilizes standard receive beamforming, identical to traditional two-way focusing, and does not require post-processing. The method can be implemented with conventional ultrasound systems, without the need for additional components. The proposed method is described analytically, optimized via numerical simulation, and validated by experiments using wire targets, tissue-mimicking phantoms, and in vivo imaging of the rat bladder.
AB - Two-way focusing, which relies on sweeping a focused beam across a field of view, is the conventional method for performing high-quality ultrasound imaging. Side lobes resulting from diffraction reduce the image contrast, thus degrade the image quality. In this paper, we present a new method for beam shaping the transmitted ultrasound waveform in order to reduce side lobes and improve image quality. The beam shaping is achieved by transmitting two different waveforms that are interlaced between the odd and even elements. One waveform generates a standard diffraction-limited single focus, and the second waveform generates two foci at the same focal depth as the single focus. The distance between the two foci is selected such that they will destructively interfere with the first order side lobes of the single focus, effectively eliminating these side lobes. A 7.5 dB side lobe reduction was measured experimentally at a depth of 60 mm, using a phased array transducer with a center frequency of 3 MHz. This real-time method utilizes standard receive beamforming, identical to traditional two-way focusing, and does not require post-processing. The method can be implemented with conventional ultrasound systems, without the need for additional components. The proposed method is described analytically, optimized via numerical simulation, and validated by experiments using wire targets, tissue-mimicking phantoms, and in vivo imaging of the rat bladder.
UR - http://www.scopus.com/inward/record.url?scp=85072706019&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-50317-7
DO - 10.1038/s41598-019-50317-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85072706019
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 13961
ER -