TY - GEN
T1 - Multiple hypothesis video segmentation from superpixel flows
AU - Vazquez-Reina, Amelio
AU - Avidan, Shai
AU - Pfister, Hanspeter
AU - Miller, Eric
PY - 2010
Y1 - 2010
N2 - Multiple Hypothesis Video Segmentation (MHVS) is a method for the unsupervised photometric segmentation of video sequences. MHVS segments arbitrarily long video streams by considering only a few frames at a time, and handles the automatic creation, continuation and termination of labels with no user initialization or supervision. The process begins by generating several pre-segmentations per frame and enumerating multiple possible trajectories of pixel regions within a short time window. After assigning each trajectory a score, we let the trajectories compete with each other to segment the sequence. We determine the solution of this segmentation problem as the MAP labeling of a higher-order random field. This framework allows MHVS to achieve spatial and temporal long-range label consistency while operating in an on-line manner. We test MHVS on several videos of natural scenes with arbitrary camera and object motion.
AB - Multiple Hypothesis Video Segmentation (MHVS) is a method for the unsupervised photometric segmentation of video sequences. MHVS segments arbitrarily long video streams by considering only a few frames at a time, and handles the automatic creation, continuation and termination of labels with no user initialization or supervision. The process begins by generating several pre-segmentations per frame and enumerating multiple possible trajectories of pixel regions within a short time window. After assigning each trajectory a score, we let the trajectories compete with each other to segment the sequence. We determine the solution of this segmentation problem as the MAP labeling of a higher-order random field. This framework allows MHVS to achieve spatial and temporal long-range label consistency while operating in an on-line manner. We test MHVS on several videos of natural scenes with arbitrary camera and object motion.
UR - http://www.scopus.com/inward/record.url?scp=78149314619&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15555-0_20
DO - 10.1007/978-3-642-15555-0_20
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:78149314619
SN - 3642155545
SN - 9783642155543
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 268
EP - 281
BT - Computer Vision, ECCV 2010 - 11th European Conference on Computer Vision, Proceedings
PB - Springer Verlag
T2 - 11th European Conference on Computer Vision, ECCV 2010
Y2 - 10 September 2010 through 11 September 2010
ER -