Multifactorial Mechanisms of Tolerance to Ketoconazole in Candida albicans

Yi Xu, Hui Lu, Shuo Zhu, Wan Qian Li, Yuan Ying Jiang, Judith Berman, Feng Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Candida albicans is a prevalent opportunistic human fungal pathogen for which treatment is limited to only four main classes of antifungal drugs, with the azole and echinocandin classes being used most frequently. Drug tolerance, the ability of some cells to grow slowly in supra-MIC drug concentrations, decreases the number of available treatment options. Here, we investigated factors affecting tolerance and resistance to ketoconazole in C. albicans. We found both temperature and the composition of growth medium significantly affected tolerance with little effect on resistance. In deletion analysis of known efflux pump genes, CDR1 was partially required for azole tolerance, while CDR2 and MDR1 were dispensable. Tolerance also required Hsp90 and calcineurin components; CRZ1, which encodes a transcription factor downstream of calcineurin, was required only partially. Deletion of VMA11, which encodes a vacuolar ATPase subunit, and concanamycin A, a V-ATPase inhibitor, abolished tolerance, indicating the importance of vacuolar energy transactions in tolerance. Thus, tolerance to ketoconazole is regulated by multiple factors, including physiological and genetic mechanisms. IMPORTANCE Due to the ever-expanding range of invasive medical procedures and treatments, invasive fungal infections now pose a serious global threat to many people living in an immunocompromised status. Like humans, fungi are eukaryotic, which significantly limits the number of unique antifungal targets; the current arsenal of antifungal agents is limited to just three frontline drug classes. Additional treatment complexities result from the development of drug tolerance and resistance, which further narrows therapeutic options; however, the difference between tolerance and resistance remains largely unknown. This study demonstrates that tolerance and resistance are regulated by multiple genetic and physiological factors. It is prudent to note that some factors affect tolerance only, while other factors affect both tolerance and resistance. The complex underlying mechanisms of these drug responses are highlighted by the fact that there are both shared and distinct mechanisms that regulate tolerance and resistance.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalMicrobiology spectrum
Volume9
Issue number1
DOIs
StatePublished - Sep 2021

Funding

FundersFunder number
960 Hospital2017ZD01
Shanghai Key Basic Research Project19JC1414900
National Natural Science Foundation of China81402978, 81673478, 81872910, 82020108032

    Keywords

    • CDR1
    • Candida albicans
    • Hsp90
    • V-ATPase
    • VMA11
    • antifungal resistance
    • antifungal tolerance
    • calcineurin
    • ketoconazole

    Fingerprint

    Dive into the research topics of 'Multifactorial Mechanisms of Tolerance to Ketoconazole in Candida albicans'. Together they form a unique fingerprint.

    Cite this