Multicollinearity is a red herring in the search for moderator variables: A guide to interpreting moderated multiple regression models and a critique of Iacobucci, Schneider, Popovich, and Bakamitsos (2016)

Gary H. McClelland, Julie R. Irwin, David Disatnik, Liron Sivan

Research output: Contribution to journalArticlepeer-review

Abstract

Multicollinearity is irrelevant to the search for moderator variables, contrary to the implications of Iacobucci, Schneider, Popovich, and Bakamitsos (Behavior Research Methods, 2016, this issue). Multicollinearity is like the red herring in a mystery novel that distracts the statistical detective from the pursuit of a true moderator relationship. We show multicollinearity is completely irrelevant for tests of moderator variables. Furthermore, readers of Iacobucci et al. might be confused by a number of their errors. We note those errors, but more positively, we describe a variety of methods researchers might use to test and interpret their moderated multiple regression models, including two-stage testing, mean-centering, spotlighting, orthogonalizing, and floodlighting without regard to putative issues of multicollinearity. We cite a number of recent studies in the psychological literature in which the researchers used these methods appropriately to test, to interpret, and to report their moderated multiple regression models. We conclude with a set of recommendations for the analysis and reporting of moderated multiple regression that should help researchers better understand their models and facilitate generalizations across studies.

Original languageEnglish
Pages (from-to)394-402
Number of pages9
JournalBehavior Research Methods
Volume49
Issue number1
DOIs
StatePublished - 1 Feb 2017

Keywords

  • Interactions
  • Moderated multiple regression
  • Multicollinearity
  • Regression analysis
  • Tutorial

Fingerprint

Dive into the research topics of 'Multicollinearity is a red herring in the search for moderator variables: A guide to interpreting moderated multiple regression models and a critique of Iacobucci, Schneider, Popovich, and Bakamitsos (2016)'. Together they form a unique fingerprint.

Cite this