Multi Layer Peeling for Linear Arrangement and Hierarchical Clustering

Yossi Azar, Danny Vainstein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a new multi-layer peeling technique to cluster points in a metric space. A well-known non-parametric objective is to embed the metric space into a simpler structured metric space such as a line (i.e., Linear Arrangement) or a binary tree (i.e., Hierarchical Clustering). Points which are close in the metric space should be mapped to close points/leaves in the line/tree; similarly, points which are far in the metric space should be far in the line or on the tree. In particular we consider the Maximum Linear Arrangement problem [20] and the Maximum Hierarchical Clustering problem [12] applied to metrics. We design approximation schemes (1 − ϵ approximation for any constant ϵ > 0) for these objectives. In particular this shows that by considering metrics one may significantly improve former approximations (0.5 for Max Linear Arrangement and 0.74 for Max Hierarchical Clustering). Our main technique, which is called multi-layer peeling, consists of recursively peeling off points which are far from the “core” of the metric space. The recursion ends once the core becomes a sufficiently densely weighted metric space (i.e. the average distance is at least a constant times the diameter) or once it becomes negligible with respect to its inner contribution to the objective. Interestingly, the algorithm in the Linear Arrangement case is much more involved than that in the Hierarchical Clustering case, and uses a significantly more delicate peeling.

Original languageEnglish
Title of host publication50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
EditorsKousha Etessami, Uriel Feige, Gabriele Puppis
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772785
DOIs
StatePublished - Jul 2023
Event50th International Colloquium on Automata, Languages, and Programming, ICALP 2023 - Paderborn, Germany
Duration: 10 Jul 202314 Jul 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume261
ISSN (Print)1868-8969

Conference

Conference50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
Country/TerritoryGermany
CityPaderborn
Period10/07/2314/07/23

Keywords

  • Hierarchical clustering
  • Linear arrangements
  • Metric embeddings

Fingerprint

Dive into the research topics of 'Multi Layer Peeling for Linear Arrangement and Hierarchical Clustering'. Together they form a unique fingerprint.

Cite this