MTAdam: Automatic Balancing of Multiple Training Loss Terms

Itzik Malkiel, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

When training neural models, it is common to combine multiple loss terms. The balancing of these terms requires considerable human effort and is computationally demanding. Moreover, the optimal trade-off between the loss terms can change as training progresses, e.g., for adversarial terms. In this work, we generalize the Adam optimization algorithm to handle multiple loss terms. The guiding principle is that for every layer, the gradient magnitude of the terms should be balanced. To this end, the Multi-Term Adam (MTAdam) computes the derivative of each loss term separately, infers the first and second moments per parameter and loss term, and calculates a first moment for the magnitude per layer of the gradients arising from each loss. This magnitude is used to continuously balance the gradients across all layers, in a manner that both varies from one layer to the next and dynamically changes over time. Our results show that training with the new method leads to fast recovery from suboptimal initial loss weighting and to training outcomes that match or improve conventional training with the prescribed hyperparameters of each method.

Original languageEnglish
Title of host publicationEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages10713-10729
Number of pages17
ISBN (Electronic)9781955917094
DOIs
StatePublished - 2021
Event2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, Dominican Republic
Duration: 7 Nov 202111 Nov 2021

Publication series

NameEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Country/TerritoryDominican Republic
CityVirtual, Punta Cana
Period7/11/2111/11/21

Fingerprint

Dive into the research topics of 'MTAdam: Automatic Balancing of Multiple Training Loss Terms'. Together they form a unique fingerprint.

Cite this