TY - JOUR
T1 - Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NF-κB activation in a cystic fibrosis epithelial cell line
AU - Blau, Hannah
AU - Klein, Keren
AU - Shalit, Itamar
AU - Halperin, Drora
AU - Fabian, Ina
PY - 2007/1
Y1 - 2007/1
N2 - Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-α, IL-1β, or LPS with or without 5-50 μg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-κB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-α and IL-1β increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-α (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-κB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-α increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 μg/ml) and CIP (50 μg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-α-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-κB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-α and IL-1β induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.
AB - Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-α, IL-1β, or LPS with or without 5-50 μg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-κB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-α and IL-1β increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-α (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-κB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-α increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 μg/ml) and CIP (50 μg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-α-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-κB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-α and IL-1β induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.
KW - Airway epithelium
KW - Immunomodulation
KW - Inflammation
KW - Quinolones
UR - http://www.scopus.com/inward/record.url?scp=33846231458&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00030.2006
DO - 10.1152/ajplung.00030.2006
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33846231458
SN - 1040-0605
VL - 292
SP - L343-L352
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 1
ER -