@article{953373c376514e46b05fd350b0eac69e,
title = "Motor-free contractility of active biopolymer networks",
abstract = "Contractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism for generating contractile forces in synthetic active materials.",
author = "Sihan Chen and Tomer Markovich and Mackintosh, {Fred C.}",
note = "Publisher Copyright: {\textcopyright} 2023 American Physical Society.",
year = "2023",
month = oct,
doi = "10.1103/PhysRevE.108.044405",
language = "אנגלית",
volume = "108",
journal = "Physical Review E",
issn = "2470-0045",
publisher = "American Physical Society",
number = "4",
}