@article{e251f471f7024b02b6e8368c7bc6b862,
title = "Morphogenesis of 3D vascular networks is regulated by tensile forces",
abstract = "Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair.",
keywords = "Endothelial cells, Engineered tissue, Mechanical forces, Vascularization",
author = "Dekel Rosenfeld and Shira Landau and Yulia Shandalov and Noa Raindel and Alina Freiman and Erez Shor and Yaron Blinder and Vandenburgh, {Herman H.} and Mooney, {David J.} and Shulamit Levenberg",
note = "Funding Information: ACKNOWLEDGMENTS: We thank Inbal Michael for help with the cytokine analysis and Yehudit Posen for proofreading the article. The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Program (FP/2007-2013), ERC Grant Agreement 281501-ENGVASC and Grant Agreement 229294-NanoCard, and was supported in part by the Russell Berrie Nanotechnology Institute at the Technion-Israel Institute of Technology.",
year = "2016",
month = mar,
day = "22",
doi = "10.1073/pnas.1522273113",
language = "אנגלית",
volume = "113",
pages = "3215--3220",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
publisher = "National Academy of Sciences",
number = "12",
}