## Abstract

(1) It is shown that if c is real-valued measurable then the Maharam type of (c, P(c), σ) is 2^{c}. This answers a question of D. Fremlin [Fr, (P2f)]. (2) A different construction of a model with a real-valued measurable cardinal is given from that of R. Solovay [So]. This answers a question of D. Fremlin [Fr, (P1)]. (3) The forcing with a K-complete ideal over a set X, |X| ≥ K cannot be isomorphic to Random x Cohen or Cohen x Random. The result for X = K was proved in [Gi-Sh1] but, as was pointed out to us by M. Burke, the application of it in [Gi-Sh2] requires dealing with any X. The application is: if A_{n} is a set of reals for n < ω then for some pairwise disjoint B_{n} (for n < ω) we have B_{n} ⊆ A_{n} but they have the same outer Lebesgue measure.

Original language | English |
---|---|

Pages (from-to) | 221-242 |

Number of pages | 22 |

Journal | Israel Journal of Mathematics |

Volume | 124 |

DOIs | |

State | Published - 2001 |