TY - JOUR
T1 - Monotone Learning
AU - Bousquet, Olivier
AU - Daniely, Amit
AU - Kaplan, Haim
AU - Mansour, Yishay
AU - Moran, Shay
AU - Stemmer, Uri
N1 - Publisher Copyright:
© 2022 O. Bousquet, A. Daniely, H. Kaplan, Y. Mansour, S. Moran & U. Stemmer.
PY - 2022
Y1 - 2022
N2 - The amount of training-data is one of the key factors which determines the generalization capacity of learning algorithms. Intuitively, one expects the error rate to decrease as the amount of training-data increases. Perhaps surprisingly, natural attempts to formalize this intuition give rise to interesting and challenging mathematical questions. For example, in their classical book on pattern recognition, Devroye, Györfi, and Lugosi (1996) ask whether there exists a monotone Bayes-consistent algorithm. This question remained open for over 25 years, until recently Pestov (2021) resolved it for binary classification, using an intricate construction of a monotone Bayes-consistent algorithm. We derive a general result in multiclass classification, showing that every learning algorithm A can be transformed to a monotone one with similar performance. Further, the transformation is efficient and only uses a black-box oracle access to A. This demonstrates that one can provably avoid non-monotonic behaviour without compromising performance, thus answering questions asked by Devroye, Györfi, and Lugosi (1996), Viering, Mey, and Loog (2019), Viering and Loog (2021), and by Mhammedi (2021). Our general transformation readily implies monotone learners in a variety of contexts: for example, Pestov’s result follows by applying it on any Bayes-consistent algorithm (e.g., k-NearestNeighbours). In fact, our transformation extends Pestov’s result to classification tasks with an arbitrary number of labels. This is in contrast with Pestov’s work which is tailored to binary classification. In addition, we provide uniform bounds on the error of the monotone algorithm. This makes our transformation applicable in distribution-free settings. For example, in PAC learning it implies that every learnable class admits a monotone PAC learner. This resolves questions asked by Viering, Mey, and Loog (2019); Viering and Loog (2021); Mhammedi (2021).
AB - The amount of training-data is one of the key factors which determines the generalization capacity of learning algorithms. Intuitively, one expects the error rate to decrease as the amount of training-data increases. Perhaps surprisingly, natural attempts to formalize this intuition give rise to interesting and challenging mathematical questions. For example, in their classical book on pattern recognition, Devroye, Györfi, and Lugosi (1996) ask whether there exists a monotone Bayes-consistent algorithm. This question remained open for over 25 years, until recently Pestov (2021) resolved it for binary classification, using an intricate construction of a monotone Bayes-consistent algorithm. We derive a general result in multiclass classification, showing that every learning algorithm A can be transformed to a monotone one with similar performance. Further, the transformation is efficient and only uses a black-box oracle access to A. This demonstrates that one can provably avoid non-monotonic behaviour without compromising performance, thus answering questions asked by Devroye, Györfi, and Lugosi (1996), Viering, Mey, and Loog (2019), Viering and Loog (2021), and by Mhammedi (2021). Our general transformation readily implies monotone learners in a variety of contexts: for example, Pestov’s result follows by applying it on any Bayes-consistent algorithm (e.g., k-NearestNeighbours). In fact, our transformation extends Pestov’s result to classification tasks with an arbitrary number of labels. This is in contrast with Pestov’s work which is tailored to binary classification. In addition, we provide uniform bounds on the error of the monotone algorithm. This makes our transformation applicable in distribution-free settings. For example, in PAC learning it implies that every learnable class admits a monotone PAC learner. This resolves questions asked by Viering, Mey, and Loog (2019); Viering and Loog (2021); Mhammedi (2021).
KW - Bayes consistency
KW - Learning curve
KW - Monotonicity
KW - PAC learning
UR - http://www.scopus.com/inward/record.url?scp=85149889829&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85149889829
SN - 2640-3498
VL - 178
SP - 842
EP - 866
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 35th Conference on Learning Theory, COLT 2022
Y2 - 2 July 2022 through 5 July 2022
ER -