Abstract
For a projective curve $C\subset \textbf{P} ^n$ defined over a finite field $\textbf{F} _q$ we study the statistics of the $\textbf{F} _q$-structure of a section of $C$ by a random hyperplane defined over $\textbf{F} _q$ in the $q\to \infty $ limit. We obtain a very general equidistribution result for this problem. We deduce many old and new results about decomposition statistics over finite fields in this limit. Our main tool will be the calculation of the monodromy of transversal hyperplane sections of a projective curve.
Original language | English |
---|---|
Pages (from-to) | 10409-10441 |
Number of pages | 33 |
Journal | International Mathematics Research Notices |
Volume | 2021 |
Issue number | 14 |
DOIs | |
State | Published - 1 Jul 2021 |