MONET: Multi-omic module discovery by omic selection

Nimrod Rappoport, Roy Safra, Ron Shamir*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Recent advances in experimental biology allow creation of datasets where several genome-wide data types (called omics) are measured per sample. Integrative analysis of multi-omic datasets in general, and clustering of samples in such datasets specifically, can improve our understanding of biological processes and discover different disease subtypes. In this work we present MONET (Multi Omic clustering by Non-Exhaustive Types), which presents a unique approach to multi-omic clustering. MONET discovers modules of similar samples, such that each module is allowed to have a clustering structure for only a subset of the omics. This approach differs from most existent multi-omic clustering algorithms, which assume a common structure across all omics, and from several recent algorithms that model distinct cluster structures. We tested MONET extensively on simulated data, on an image dataset, and on ten multi-omic cancer datasets from TCGA. Our analysis shows that MONET compares favorably with other multi-omic clustering methods. We demonstrate MONET's biological and clinical relevance by analyzing its results for Ovarian Serous Cystadenocarcinoma. We also show that MONET is robust to missing data, can cluster genes in multi-omic dataset, and reveal modules of cell types in single-cell multi-omic data. Our work shows that MONET is a valuable tool that can provide complementary results to those provided by existent algorithms for multi-omic analysis.

Original languageEnglish
Article number1008182
JournalPLoS Computational Biology
Volume16
Issue number9
DOIs
StatePublished - Sep 2020

Funding

FundersFunder number
Edmond J. Safra Center for Bioinformatics
National Human Genome Research Institute
National Cancer Institute
Israel Science FoundationDFG RE 4193/1-1, 3165/19, 1339/18
Tel Aviv University

    Fingerprint

    Dive into the research topics of 'MONET: Multi-omic module discovery by omic selection'. Together they form a unique fingerprint.

    Cite this