Abstract
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
Original language | English |
---|---|
Pages (from-to) | 614-617 |
Number of pages | 4 |
Journal | Science |
Volume | 346 |
Issue number | 6209 |
DOIs | |
State | Published - 31 Oct 2014 |
Fingerprint
Dive into the research topics of 'Momentum sharing in imbalanced Fermi systems'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Momentum sharing in imbalanced Fermi systems. / Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; May-Tal Beck, S.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J.D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.
In: Science, Vol. 346, No. 6209, 31.10.2014, p. 614-617.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Momentum sharing in imbalanced Fermi systems
AU - Hen, O.
AU - Sargsian, M.
AU - Weinstein, L. B.
AU - Piasetzky, E.
AU - Hakobyan, H.
AU - Higinbotham, D. W.
AU - Braverman, M.
AU - Brooks, W. K.
AU - Gilad, S.
AU - Adhikari, K. P.
AU - Arrington, J.
AU - Asryan, G.
AU - Avakian, H.
AU - Ball, J.
AU - Baltzell, N. A.
AU - Battaglieri, M.
AU - Beck, A.
AU - May-Tal Beck, S.
AU - Bedlinskiy, I.
AU - Bertozzi, W.
AU - Biselli, A.
AU - Burkert, V. D.
AU - Cao, T.
AU - Carman, D. S.
AU - Celentano, A.
AU - Chandavar, S.
AU - Colaneri, L.
AU - Cole, P. L.
AU - Crede, V.
AU - D'Angelo, A.
AU - De Vita, R.
AU - Deur, A.
AU - Djalali, C.
AU - Doughty, D.
AU - Dugger, M.
AU - Dupre, R.
AU - Egiyan, H.
AU - El Alaoui, A.
AU - El Fassi, L.
AU - Elouadrhiri, L.
AU - Fedotov, G.
AU - Fegan, S.
AU - Forest, T.
AU - Garillon, B.
AU - Garcon, M.
AU - Gevorgyan, N.
AU - Ghandilyan, Y.
AU - Gilfoyle, G. P.
AU - Girod, F. X.
AU - Goetz, J. T.
AU - Gothe, R. W.
AU - Griffioen, K. A.
AU - Guidal, M.
AU - Guo, L.
AU - Hafidi, K.
AU - Hanretty, C.
AU - Hattawy, M.
AU - Hicks, K.
AU - Holtrop, M.
AU - Hyde, C. E.
AU - Ilieva, Y.
AU - Ireland, D. G.
AU - Ishkanov, B. I.
AU - Isupov, E. L.
AU - Jiang, H.
AU - Jo, H. S.
AU - Joo, K.
AU - Keller, D.
AU - Khandaker, M.
AU - Kim, A.
AU - Kim, W.
AU - Klein, F. J.
AU - Koirala, S.
AU - Korover, I.
AU - Kuhn, S. E.
AU - Kubarovsky, V.
AU - Lenisa, P.
AU - Levine, W. I.
AU - Livingston, K.
AU - Lowry, M.
AU - Lu, H. Y.
AU - MacGregor, I. J.D.
AU - Markov, N.
AU - Mayer, M.
AU - McKinnon, B.
AU - Mineeva, T.
AU - Mokeev, V.
AU - Movsisyan, A.
AU - Munoz Camacho, C.
AU - Mustapha, B.
AU - Nadel-Turonski, P.
AU - Niccolai, S.
AU - Niculescu, G.
AU - Niculescu, I.
AU - Osipenko, M.
AU - Pappalardo, L. L.
AU - Paremuzyan, R.
AU - Park, K.
AU - Pasyuk, E.
AU - Phelps, W.
AU - Pisano, S.
AU - Pogorelko, O.
AU - Price, J. W.
AU - Procureur, S.
AU - Prok, Y.
AU - Protopopescu, D.
AU - Puckett, A. J.R.
AU - Rimal, D.
AU - Ripani, M.
AU - Ritchie, B. G.
AU - Rizzo, A.
AU - Rosner, G.
AU - Roy, P.
AU - Rossi, P.
AU - Sabatié, F.
AU - Schott, D.
AU - Schumacher, R. A.
AU - Sharabian, Y. G.
AU - Smith, G. D.
AU - Shneor, R.
AU - Sokhan, D.
AU - Stepanyan, S. S.
AU - Stepanyan, S.
AU - Stoler, P.
AU - Strauch, S.
AU - Sytnik, V.
AU - Taiuti, M.
AU - Tkachenko, S.
AU - Ungaro, M.
AU - Vlassov, A. V.
AU - Voutier, E.
AU - Walford, N. K.
AU - Wei, X.
AU - Wood, M. H.
AU - Wood, S. A.
AU - Zachariou, N.
AU - Zana, L.
AU - Zhao, Z. W.
AU - Zheng, X.
AU - Zonta, I.
N1 - Publisher Copyright: © 2014 by the American Association for the Advancement of Science; all rights reserved.
PY - 2014/10/31
Y1 - 2014/10/31
N2 - The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
AB - The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
UR - http://www.scopus.com/inward/record.url?scp=84908701593&partnerID=8YFLogxK
U2 - 10.1126/science.1256785
DO - 10.1126/science.1256785
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 25323697
AN - SCOPUS:84908701593
VL - 346
SP - 614
EP - 617
JO - Science
JF - Science
SN - 0036-8075
IS - 6209
ER -