MoDi: Unconditional Motion Synthesis from Diverse Data

Sigal Raab, Inbal Leibovitch, Peizhuo Li, Kfir Aberman, Olga Sorkine-Hornung, Daniel Cohen-Or

Research output: Contribution to journalConference articlepeer-review

24 Scopus citations

Abstract

The emergence of neural networks has revolutionized the field of motion synthesis. Yet, learning to unconditionally synthesize motions from a given distribution remains challenging, especially when the motions are highly diverse. In this work, we present MoDi - a generative model trained in an unsupervised setting from an extremely diverse, unstructured and unlabeled dataset. During inference, MoDi can synthesize high-quality, diverse motions. Despite the lack of any structure in the dataset, our model yields a well-behaved and highly structured latent space, which can be semantically clustered, constituting a strong motion prior that facilitates various applications including semantic editing and crowd animation. In addition, we present an encoder that inverts real motions into MoDi's natural motion manifold, issuing solutions to various ill-posed challenges such as completion from prefix and spatial editing. Our qualitative and quantitative experiments achieve state-of-the-art results that outperform recent SOTA techniques.

Original languageEnglish
Pages (from-to)13873-13883
Number of pages11
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Funding

FundersFunder number
Israel Science Foundation2492/20, 3441/21

    Keywords

    • Humans: Face
    • body
    • gesture
    • movement
    • pose

    Fingerprint

    Dive into the research topics of 'MoDi: Unconditional Motion Synthesis from Diverse Data'. Together they form a unique fingerprint.

    Cite this