Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study

G. Katriel, R. Yaari, A. Huppert, U. Roll, L. Stone

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents new computational and modelling tools for studying the dynamics of an epidemic in its initial stages that use both available incidence time series and data describing the population's infection network structure. The work is motivated by data collected at the beginning of the H1N1 pandemic outbreak in Israel in the summer of 2009. We formulated a new discrete-time stochastic epidemic SIR (susceptible-infected-recovered) model that explicitly takes into account the disease's specific generation-time distribution and the intrinsic demographic stochasticity inherent to the infection process. Moreover, in contrast with many other modelling approaches, the model allows direct analytical derivation of estimates for the effective reproductive number (Re) and of their credible intervals, by maximum likelihood and Bayesian methods. The basic model can be extended to include age-class structure, and a maximum likelihood methodology allows us to estimate the model's next-generation matrix by combining two types of data: (i) the incidence series of each age group, and (ii) infection network data that provide partial information of 'who-infected-who'. Unlike other approaches for estimating the next-generation matrix, the method developed here does not require making a priori assumptions about the structure of the next-generation matrix. We show, using a simulation study, that even a relatively small amount of information about the infection network greatly improves the accuracy of estimation of the next- generationmatrix. The method is applied in practice to estimate the next-generation matrix from the Israeli H1N1 pandemic data. The tools developed here should be of practical importance for future investigations of epidemics during their initial stages. However, they require the availability of data which represent a random sample of the real epidemic process. We discuss the conditions under which reporting rates may or may not influence our estimated quantities and the effects of bias.

Original languageEnglish
Pages (from-to)856-867
Number of pages12
JournalJournal of the Royal Society Interface
Volume8
Issue number59
DOIs
StatePublished - 6 Jun 2011

Keywords

  • Epidemic modelling
  • H1N1 influenza
  • Maximum likelihood
  • Model fitting
  • Next-generation matrix

Fingerprint

Dive into the research topics of 'Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study'. Together they form a unique fingerprint.

Cite this