TY - JOUR
T1 - Modeling the reactive oxygen species (ROS) wave in Chlamydomonas reinhardtii colonies
AU - Zhou, Yuanzhe
AU - Fichman, Yosef
AU - Zhang, Sicheng
AU - Mittler, Ron
AU - Chen, Shi Jie
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/9
Y1 - 2024/9
N2 - Reactive oxygen species (ROS) play a crucial role as signaling molecules in both plant and animal cells, enabling rapid responses to various stimuli. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced-ROS release (RIRR) is emerging as an important pathway involved in the responses of various multicellular and unicellular organisms to environmental stresses. In RIRR, one cellular compartment, organelle, or cell generates or releases ROS, triggering an increased ROS production and release by another compartment, organelle, or cell, thereby giving rise to a fast propagating ROS wave. This RIRR-based signal relay has been demonstrated to facilitate mitochondria-to-mitochondria communication in animal cells and long-distance systemic signaling in plants in response to biotic and abiotic stresses. More recently, it has been discovered that different unicellular microorganism communities also exhibit a RIRR cell-to-cell signaling process triggered by a localized stress treatment. However, the precise mechanism underlying the propagation of the ROS signal among cells within these unicellular communities remained elusive. In this study, we employed a reaction-diffusion model incorporating the RIRR mechanism to analyze the propagation of ROS-mediated signals. By effectively balancing production and scavenging processes, our model successfully reproduces the experimental ROS signal velocities observed in unicellular green algae (Chlamydomonas reinhardtii) colonies grown on agar plates, furthering our understanding of intercellular ROS communication.
AB - Reactive oxygen species (ROS) play a crucial role as signaling molecules in both plant and animal cells, enabling rapid responses to various stimuli. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced-ROS release (RIRR) is emerging as an important pathway involved in the responses of various multicellular and unicellular organisms to environmental stresses. In RIRR, one cellular compartment, organelle, or cell generates or releases ROS, triggering an increased ROS production and release by another compartment, organelle, or cell, thereby giving rise to a fast propagating ROS wave. This RIRR-based signal relay has been demonstrated to facilitate mitochondria-to-mitochondria communication in animal cells and long-distance systemic signaling in plants in response to biotic and abiotic stresses. More recently, it has been discovered that different unicellular microorganism communities also exhibit a RIRR cell-to-cell signaling process triggered by a localized stress treatment. However, the precise mechanism underlying the propagation of the ROS signal among cells within these unicellular communities remained elusive. In this study, we employed a reaction-diffusion model incorporating the RIRR mechanism to analyze the propagation of ROS-mediated signals. By effectively balancing production and scavenging processes, our model successfully reproduces the experimental ROS signal velocities observed in unicellular green algae (Chlamydomonas reinhardtii) colonies grown on agar plates, furthering our understanding of intercellular ROS communication.
KW - Cell-to-cell signaling
KW - ROS wave
KW - ROS-Induced-ROS release
KW - Reaction-diffusion
UR - http://www.scopus.com/inward/record.url?scp=85195833781&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2024.06.003
DO - 10.1016/j.freeradbiomed.2024.06.003
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38851517
AN - SCOPUS:85195833781
SN - 0891-5849
VL - 222
SP - 165
EP - 172
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
ER -