TY - JOUR
T1 - Modeling of growth of the macroalga Ulva sp. in a controlled photobioreactor based on nitrogen accumulation dynamics
AU - Zollmann, Meiron
AU - Liberzon, Alexander
AU - Golberg, Alexander
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - Macroalgal biomass production models that capture nutrient dynamics, temperature, light and salinity are important for the design and operation of large-scale farms. The goal of this study is to understand how the nitrogen fertilizing regime, relating to dose (µM N week−1), amplitude (µM N) and duration (hours) of fertilization, affects the dynamics of nitrogen content and biomass production of Ulva sp. We hypothesize that the nitrogen fertilizing regime controls the Ulva Nitrogen Use Efficiency (NUE), defined here as the fraction of fertilizer nitrogen that is utilized and allocated to yield N, and, accordingly, also nitrogen assimilation in the biomass and the growth rate. We test this hypothesis by measuring internal nitrogen and biomass weight and by calculating NUE under various fertilization regimes in controlled photobioreactors. Based on these experimental data, we developed a biomass productivity model that predicts nitrogen and biomass dynamics temporally over three weeks of cultivation. This study highlights efficient fertilizing regimes and enables the development of a comprehensive understanding of the dynamic relationship between external N, internal N and biomass production of Ulva sp. under varying external N levels, which is important for real-world agricultural applications. This study provides a better understanding of the external N-internal N-biomass triangle leading to an improved dynamic cultivation model, enabling better control of nutrient application and biomass production in macroalgal farming for a sustainable marine bioeconomy.
AB - Macroalgal biomass production models that capture nutrient dynamics, temperature, light and salinity are important for the design and operation of large-scale farms. The goal of this study is to understand how the nitrogen fertilizing regime, relating to dose (µM N week−1), amplitude (µM N) and duration (hours) of fertilization, affects the dynamics of nitrogen content and biomass production of Ulva sp. We hypothesize that the nitrogen fertilizing regime controls the Ulva Nitrogen Use Efficiency (NUE), defined here as the fraction of fertilizer nitrogen that is utilized and allocated to yield N, and, accordingly, also nitrogen assimilation in the biomass and the growth rate. We test this hypothesis by measuring internal nitrogen and biomass weight and by calculating NUE under various fertilization regimes in controlled photobioreactors. Based on these experimental data, we developed a biomass productivity model that predicts nitrogen and biomass dynamics temporally over three weeks of cultivation. This study highlights efficient fertilizing regimes and enables the development of a comprehensive understanding of the dynamic relationship between external N, internal N and biomass production of Ulva sp. under varying external N levels, which is important for real-world agricultural applications. This study provides a better understanding of the external N-internal N-biomass triangle leading to an improved dynamic cultivation model, enabling better control of nutrient application and biomass production in macroalgal farming for a sustainable marine bioeconomy.
KW - Biorefinery feedstock
KW - Nitrogen Use Efficiency
KW - Ulva
KW - macroalgae-based bioeconomy
KW - precision agriculture
KW - production model
UR - http://www.scopus.com/inward/record.url?scp=85165992403&partnerID=8YFLogxK
U2 - 10.1080/26388081.2023.2224423
DO - 10.1080/26388081.2023.2224423
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85165992403
SN - 2638-8081
VL - 4
SP - 121
EP - 140
JO - Applied Phycology
JF - Applied Phycology
IS - 1
ER -