Abstract
In this paper we present a speaker recognition algorithm that models explicitly intra-speaker inter-session variability. Such variability may be caused by changing speaker characteristics (mood, fatigue, etc.), channel variability or noise variability. We define a session-space in which each session (either train or test session) is a vector. We then calculate a rotation of the session-space for which the estimated intra-speaker subspace is isolated and can be modeled explicitly. We evaluated our technique on the NIST-2004 speaker recognition evaluation corpus, and compared it to a GMM baseline system. Results indicate significant reduction in error rate.
Original language | English |
---|---|
Pages | 2177-2180 |
Number of pages | 4 |
State | Published - 2005 |
Event | 9th European Conference on Speech Communication and Technology - Lisbon, Portugal Duration: 4 Sep 2005 → 8 Sep 2005 |
Conference
Conference | 9th European Conference on Speech Communication and Technology |
---|---|
Country/Territory | Portugal |
City | Lisbon |
Period | 4/09/05 → 8/09/05 |