TY - JOUR
T1 - Micromotor-based localized electroporation and gene transfection of mammalian cells
AU - Wu, Yue
AU - Fu, Afu
AU - Yossifon, Gilad
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/9/21
Y1 - 2021/9/21
N2 - Herein, we studied localized electroporation and gene transfection of mammalian cells using a metallodielectric hybrid micromotor that is magnetically and electrically powered. Much like nanochannel-based, local electroporation of single cells, the presented micromotor was expected to increase reversible electroporation yield, relative to standard electroporation, as only a small portion of the cell’s membrane (in contact with the micromotor) is affected. In contrast to methods in which the entire membrane of all cells within the sample are electroporated, the presented micromotor can perform, via magnetic steering, localized, spatially precise electroporation of the target cells that it traps and transports. In order to minimize nonselective electrical lysis of all cells within the chamber, resulting from extended exposure to an electrical field, magnetic propulsion was used to approach the immediate vicinity of the targeted cell, after which short-duration, electric-driven propulsion was activated to enable contact with the cell, followed by electroporation. In addition to local injection of fluorescent dye molecules, we demonstrated that the micromotor can enhance the introduction of plasmids into the suspension cells because of the dielectrophoretic accumulation of the plasmids in between the Janus particle and the attached cell prior to the electroporation step. Here, we chose a different strategy involving the simultaneous operation of many micromotors that are self-propelling, without external steering, and pair with cells in an autonomic manner. The locally electroporated suspension cells that are considered to be very difficult to transfect were shown to express the transfected gene, which is of significant importance for molecular biology research.
AB - Herein, we studied localized electroporation and gene transfection of mammalian cells using a metallodielectric hybrid micromotor that is magnetically and electrically powered. Much like nanochannel-based, local electroporation of single cells, the presented micromotor was expected to increase reversible electroporation yield, relative to standard electroporation, as only a small portion of the cell’s membrane (in contact with the micromotor) is affected. In contrast to methods in which the entire membrane of all cells within the sample are electroporated, the presented micromotor can perform, via magnetic steering, localized, spatially precise electroporation of the target cells that it traps and transports. In order to minimize nonselective electrical lysis of all cells within the chamber, resulting from extended exposure to an electrical field, magnetic propulsion was used to approach the immediate vicinity of the targeted cell, after which short-duration, electric-driven propulsion was activated to enable contact with the cell, followed by electroporation. In addition to local injection of fluorescent dye molecules, we demonstrated that the micromotor can enhance the introduction of plasmids into the suspension cells because of the dielectrophoretic accumulation of the plasmids in between the Janus particle and the attached cell prior to the electroporation step. Here, we chose a different strategy involving the simultaneous operation of many micromotors that are self-propelling, without external steering, and pair with cells in an autonomic manner. The locally electroporated suspension cells that are considered to be very difficult to transfect were shown to express the transfected gene, which is of significant importance for molecular biology research.
KW - Electroporation
KW - Gene transfection
KW - Micromotor
UR - http://www.scopus.com/inward/record.url?scp=85115318878&partnerID=8YFLogxK
U2 - 10.1073/pnas.2106353118
DO - 10.1073/pnas.2106353118
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34531322
AN - SCOPUS:85115318878
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 38
M1 - e2106353118
ER -