Micromotor-based localized electroporation and gene transfection of mammalian cells

Yue Wu, Afu Fu, Gilad Yossifon*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Herein, we studied localized electroporation and gene transfection of mammalian cells using a metallodielectric hybrid micromotor that is magnetically and electrically powered. Much like nanochannel-based, local electroporation of single cells, the presented micromotor was expected to increase reversible electroporation yield, relative to standard electroporation, as only a small portion of the cell’s membrane (in contact with the micromotor) is affected. In contrast to methods in which the entire membrane of all cells within the sample are electroporated, the presented micromotor can perform, via magnetic steering, localized, spatially precise electroporation of the target cells that it traps and transports. In order to minimize nonselective electrical lysis of all cells within the chamber, resulting from extended exposure to an electrical field, magnetic propulsion was used to approach the immediate vicinity of the targeted cell, after which short-duration, electric-driven propulsion was activated to enable contact with the cell, followed by electroporation. In addition to local injection of fluorescent dye molecules, we demonstrated that the micromotor can enhance the introduction of plasmids into the suspension cells because of the dielectrophoretic accumulation of the plasmids in between the Janus particle and the attached cell prior to the electroporation step. Here, we chose a different strategy involving the simultaneous operation of many micromotors that are self-propelling, without external steering, and pair with cells in an autonomic manner. The locally electroporated suspension cells that are considered to be very difficult to transfect were shown to express the transfected gene, which is of significant importance for molecular biology research.

Original languageEnglish
Article numbere2106353118
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number38
DOIs
StatePublished - 21 Sep 2021
Externally publishedYes

Funding

FundersFunder number
Eyal Abraham and Shlomo Wais
Israel Academy of Sciences and Humanities Postdoctoral Fellowships for Foreign Researchers
Micro-Nano Fabrication Unit
Russell Berrie Nanotechnology Institute
Technion-Guangdong
Israel Science Foundation1938/16

    Keywords

    • Electroporation
    • Gene transfection
    • Micromotor

    Fingerprint

    Dive into the research topics of 'Micromotor-based localized electroporation and gene transfection of mammalian cells'. Together they form a unique fingerprint.

    Cite this