## Abstract

We consider a generalization of the fundamental online metrical service systems (MSS) problem where the feasible region can be transformed between requests. In this problem, which we call T-MSS, an algorithm maintains a point in a metric space and has to serve a sequence of requests. Each request is a map (transformation) f_{t} : A_{t} → B_{t} between subsets A_{t} and B_{t} of the metric space. To serve it, the algorithm has to go to a point a_{t} ∈ A_{t}, paying the distance from its previous position. Then, the transformation is applied, modifying the algorithm’s state to f_{t}(a_{t}). Such transformations can model, e.g., changes to the environment that are outside of an algorithm’s control, and we therefore do not charge any additional cost to the algorithm when the transformation is applied. The transformations also allow to model requests occurring in the k-taxi problem. We show that for α-Lipschitz transformations, the competitive ratio is Θ(α)^{n-2} on n-point metrics. Here, the upper bound is achieved by a deterministic algorithm and the lower bound holds even for randomized algorithms. For the k-taxi problem, we prove a competitive ratio of Õ((nlog k)^{2}). For chasing convex bodies, we show that even with contracting transformations no competitive algorithm exists. The problem T-MSS has a striking connection to the following deep mathematical question: Given a finite metric space M, what is the required cardinality of an extension M ⊇ M where each partial isometry on M extends to an automorphism? We give partial answers for special cases.

Original language | English |
---|---|

Title of host publication | 12th Innovations in Theoretical Computer Science Conference, ITCS 2021 |

Editors | James R. Lee |

Publisher | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |

ISBN (Electronic) | 9783959771771 |

DOIs | |

State | Published - 1 Feb 2021 |

Event | 12th Innovations in Theoretical Computer Science Conference, ITCS 2021 - Virtual, Online Duration: 6 Jan 2021 → 8 Jan 2021 |

### Publication series

Name | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|

Volume | 185 |

ISSN (Print) | 1868-8969 |

### Conference

Conference | 12th Innovations in Theoretical Computer Science Conference, ITCS 2021 |
---|---|

City | Virtual, Online |

Period | 6/01/21 → 8/01/21 |

### Funding

Funders | Funder number |
---|---|

National Science Foundation | |

Microsoft Research | |

United States - Israel Binational Science Foundation | 2018352 |

Nederlandse Organisatie voor Wetenschappelijk Onderzoek | 639.023.812 |

Israel Science Foundation | 2233/19 |

## Keywords

- Competitive analysis
- K-taxi
- Metrical task systems
- Online algorithms