Methane Pyrolysis Using a Multiphase Molten Metal Reactor

Saurav Sorcar, Brian A. Rosen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Methane pyrolysis is a unique approach toward generating hydrogen and valuable carbon products, with the added advantage of low to near-zero CO2 emissions. Currently, the most popular method for hydrogen production is steam methane reforming, which generates more than 10 kg of CO2 for every 1 kg of hydrogen. By comparison, methane pyrolysis produces hydrogen and solid carbon with no COx biproduct. Methane pyrolysis on a conventional solid catalyst exhibits low activation energy, but the carbon coproduct cannot be separated and rapidly poisons the surface (coking). On the other hand, molten liquid metal catalysts have been shown to have the advantage of separatable carbon, but their high activation energy limits the rate of the reaction and potential for economic industrialization. In this work, methane pyrolysis was shown using a multiphase molten metal reactor where both liquid and solid metal alloy catalysts were in equilibrium. Catalytic measurements using a Sn-Ni melt showed that operating the reactor in the two-phase region of the Sn-Ni phase diagram decreased the apparent activation energy from 355 kJ/mol in the liquid-only melt to 158 kJ/mol, all while maintaining the ability to separate and recover graphitic carbon.

Original languageEnglish
Pages (from-to)10161-10166
Number of pages6
JournalACS Catalysis
Volume13
Issue number15
DOIs
StatePublished - 4 Aug 2023

Keywords

  • activation energy
  • bubble
  • methane
  • molten
  • nickel
  • pyrolysis
  • tin

Fingerprint

Dive into the research topics of 'Methane Pyrolysis Using a Multiphase Molten Metal Reactor'. Together they form a unique fingerprint.

Cite this