TY - JOUR
T1 - Metabolic-network-driven analysis of bacterial ecological strategies
AU - Freilich, Shiri
AU - Kreimer, Anat
AU - Borenstein, Elhanan
AU - Yosef, Nir
AU - Sharan, Roded
AU - Gophna, Uri
AU - Ruppin, Eytan
N1 - Funding Information:
We thank Eduardo Rocha for kindly providing information on bacterial growth rates, Eyal Privman for assisting with searches against environmental databases, and Tomer Shlomi and Martin Kupiec for reading the manuscript and providing helpful feedback. This work was supported by grants from the Israeli Science Foundation (ISF), the German-Israel Foundation (GIF) and Tauber Fund to ER. SF was supported by a Long-Term EMBO Fellowship and is a fellow of the Edmond J Safra Program in Tel-Aviv University. EB is supported by the Morrison Institute for Population and Resource Studies, a grant to the Santa Fe Institute from the James S McDonnell Foundation 21st Century Collaborative Award Studying Complex Systems and by NIH Grant GM28016. RS was supported by grants from the German-Israel Foundation and ERA-NET PathoGenoMics. NY was supported by the Tel-Aviv University rector and president scholarship. UG was supported by the Bi-national Science Foundation and the German-Israeli Foundation for Research and Development.
PY - 2009/6/5
Y1 - 2009/6/5
N2 - Background: The growth-rate of an organism is an important phenotypic trait, directly affecting its ability to survive in a given environment. Here we present the first large scale computational study of the association between ecological strategies and growth rate across 113 bacterial species, occupying a variety of metabolic habitats. Genomic data are used to reconstruct the species' metabolic networks and habitable metabolic environments. These reconstructions are then used to investigate the typical ecological strategies taken by organisms in terms of two basic species-specific measures: metabolic variability - the ability of a species to survive in a variety of different environments; and co-habitation score vector - the distribution of other species that co-inhabit each environment. Results: We find that growth rate is significantly correlated with metabolic variability and the level of co-habitation (that is, competition) encountered by an organism. Most bacterial organisms adopt one of two main ecological strategies: a specialized niche with little co-habitation, associated with a typically slow rate of growth; or ecological diversity with intense co-habitation, associated with a typically fast rate of growth. Conclusions: The pattern observed suggests a universal principle where metabolic flexibility is associated with a need to grow fast, possibly in the face of competition. This new ability to produce a quantitative description of the growth rate-metabolism-community relationship lays a computational foundation for the study of a variety of aspects of the communal metabolic life.
AB - Background: The growth-rate of an organism is an important phenotypic trait, directly affecting its ability to survive in a given environment. Here we present the first large scale computational study of the association between ecological strategies and growth rate across 113 bacterial species, occupying a variety of metabolic habitats. Genomic data are used to reconstruct the species' metabolic networks and habitable metabolic environments. These reconstructions are then used to investigate the typical ecological strategies taken by organisms in terms of two basic species-specific measures: metabolic variability - the ability of a species to survive in a variety of different environments; and co-habitation score vector - the distribution of other species that co-inhabit each environment. Results: We find that growth rate is significantly correlated with metabolic variability and the level of co-habitation (that is, competition) encountered by an organism. Most bacterial organisms adopt one of two main ecological strategies: a specialized niche with little co-habitation, associated with a typically slow rate of growth; or ecological diversity with intense co-habitation, associated with a typically fast rate of growth. Conclusions: The pattern observed suggests a universal principle where metabolic flexibility is associated with a need to grow fast, possibly in the face of competition. This new ability to produce a quantitative description of the growth rate-metabolism-community relationship lays a computational foundation for the study of a variety of aspects of the communal metabolic life.
UR - http://www.scopus.com/inward/record.url?scp=67649470562&partnerID=8YFLogxK
U2 - 10.1186/gb-2009-10-6-r61
DO - 10.1186/gb-2009-10-6-r61
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:67649470562
SN - 1474-7596
VL - 10
JO - Genome Biology
JF - Genome Biology
IS - 6
M1 - R61
ER -