MEGALODON: Efficient LLM Pretraining and Inference with Unlimited Context Length

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke Zettlemoyer, Omer Levy, Chunting Zhou*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce MEGALODON, an neural architecture for efficient sequence modeling with unlimited context length. MEGALODON inherits the architecture of MEGA (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with LLAMA2, MEGALODON achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. MEGALODON reaches a training loss of 1.70, landing mid-way between LLAMA2-7B (1.75) and 13B (1.67). The improvements of MEGALODON over Transformers are robust throughout a range of benchmarks across different tasks and modalities. Code: https://github.com/XuezheMax/megalodon.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Externally publishedYes
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Fingerprint

Dive into the research topics of 'MEGALODON: Efficient LLM Pretraining and Inference with Unlimited Context Length'. Together they form a unique fingerprint.

Cite this