TY - JOUR
T1 - Mechanisms Underlying Host Range Variation in Flavivirus
T2 - From Empirical Knowledge to Predictive Models
AU - Halabi, Keren
AU - Mayrose, Itay
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/7
Y1 - 2021/7
N2 - Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
AB - Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
KW - Flavivirus
KW - Genome composition
KW - Host-shifts
KW - Machine learning
KW - Phylogeny
UR - http://www.scopus.com/inward/record.url?scp=85107326155&partnerID=8YFLogxK
U2 - 10.1007/s00239-021-10013-5
DO - 10.1007/s00239-021-10013-5
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 34059925
AN - SCOPUS:85107326155
SN - 0022-2844
VL - 89
SP - 329
EP - 340
JO - Journal of Molecular Evolution
JF - Journal of Molecular Evolution
IS - 6
ER -