Matching Pixels Using Co-occurrence Statistics

Rotal Kat, Roy Jevnisek, Shai Avidan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose a new error measure for matching pixels that is based on co-occurrence statistics. The measure relies on a co-occurrence matrix that counts the number of times pairs of pixel values co-occur within a window. The error incurred by matching a pair of pixels is inversely proportional to the probability that their values co-occur together, and not their color difference. This measure also works with features other than color, e.g. deep features. We show that this improves the state-of-the-art performance of template matching on standard benchmarks. We then propose an embedding scheme that maps the input image to an embedded image such that the Euclidean distance between pixel values in the embedded space resembles the co-occurrence statistics in the original space. This lets us run existing vision algorithms on the embedded images and enjoy the power of co-occurrence statistics for free. We demonstrate this on two algorithms, the Lucas-Kanade image registration and the Kernelized Correlation Filter (KCF) tracker. Experiments show that performance of each algorithm improves by about 10%.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages1751-1759
Number of pages9
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Fingerprint

Dive into the research topics of 'Matching Pixels Using Co-occurrence Statistics'. Together they form a unique fingerprint.

Cite this