TY - GEN
T1 - Mask-predict
AU - Ghazvininejad, Marjan
AU - Levy, Omer
AU - Liu, Yinhan
AU - Zettlemoyer, Luke
N1 - Publisher Copyright:
© 2019 Association for Computational Linguistics
PY - 2019
Y1 - 2019
N2 - Most machine translation systems generate text autoregressively from left to right. We, instead, use a masked language modeling objective to train a model to predict any subset of the target words, conditioned on both the input text and a partially masked target translation. This approach allows for efficient iterative decoding, where we first predict all of the target words non-autoregressively, and then repeatedly mask out and regenerate the subset of words that the model is least confident about. By applying this strategy for a constant number of iterations, our model improves state-of-the-art performance levels for non-autoregressive and parallel decoding translation models by over 4 BLEU on average. It is also able to reach within about 1 BLEU point of a typical left-to-right transformer model, while decoding significantly faster.1.
AB - Most machine translation systems generate text autoregressively from left to right. We, instead, use a masked language modeling objective to train a model to predict any subset of the target words, conditioned on both the input text and a partially masked target translation. This approach allows for efficient iterative decoding, where we first predict all of the target words non-autoregressively, and then repeatedly mask out and regenerate the subset of words that the model is least confident about. By applying this strategy for a constant number of iterations, our model improves state-of-the-art performance levels for non-autoregressive and parallel decoding translation models by over 4 BLEU on average. It is also able to reach within about 1 BLEU point of a typical left-to-right transformer model, while decoding significantly faster.1.
UR - http://www.scopus.com/inward/record.url?scp=85084305691&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85084305691
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 6112
EP - 6121
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics
Y2 - 3 November 2019 through 7 November 2019
ER -