Marine molluscs and fish as biomarkers of pollution stress in littoral regions of the Red Sea, Mediterranean Sea and North Sea

Vladimir Bresler, Vera Bissinger, Avigdor Abelson, Halim Dizer, Armin Sturm, Renate Kratke, Lev Fishelson, Peter Diedrich Hansen

Research output: Contribution to journalArticlepeer-review


The intensive development of industry and urban structures along the seashores of the world, as well as the immense increase in marine transportation and other activities, has resulted in the deposition of thousands of new chemicals and organic compounds, endangering the existence of organisms and ecosystems. The conventional single biomarker methods used in ecological assessment studies cannot provide an adequate base for environmental health assessment, management and sustainability planning. The present study uses a set of novel biochemical, physiological, cytogenetic and morphological methods to characterize the state of health of selected molluscs and fish along the shores of the German North Sea, as well as the Israeli Mediterranean and Red Sea. The methods include measurement of activity of multixenobiotic resistance-mediated transporter (MXRtr) and the system of active transport of organic anions (SATOA) as indicators of antixenobiotic defence; glutathione S-transferase (GST) activity as an indicator of biotransformation of xenobiotics; DNA unwinding as a marker of genotoxicity; micronucleus test for clastogenicity; levels of phagocytosis for immunotoxicity; cholinesterase (ChE) activity and level of catecholamines as indicators of neurotoxicity; permeability of external epithelia to anionic hydrophilic probe, intralysosomal accumulation of cationic amphiphilic probe and activity of non-specific esterases as indicators of cell/tissue viability. Complete histopathological examination was used for diagnostics of environmental pathology. The obtained data show that the activity of the defensive pumps, MXRtr and SATOA in the studied organisms was significantly higher in the surface epithelia of molluscs from a polluted site than that of the same species from control, unpolluted stations, providing clear evidence of response to stress. Enhanced frequency of DNA lesions (alkaline and acidic DNA unwinding) and micronucleus-containing cells was significantly higher in samples from polluted sites in comparison to those from the clean sites that exhibited genotoxic and clastogenic activity of the pollutants. In all the studied molluscs a negative correlation was found between the MXRtr levels of activity and the frequency of micronucleus-containing hemocytes. The expression of this was in accordance with the level of pollution. The complete histopathological examination demonstrates significantly higher frequencies of pathological alterations in organs of animals from polluted sites. A strong negative correlation was found between the frequency of these alterations and MXRtr activity in the same specimens. In addition to these parameters, a decrease in the viability was noted in molluscs from the polluted sites, but ChE activities remained similar at most sites. The methods applied in our study unmasked numerous early cryptic responses and negative alterations of health in populations of marine biota sampled from the polluted sites. This demonstrates that genotoxic, clastogenic and pathogenic xenobiotics are present and act in the studied sites and this knowledge can provide a reliable base for consideration for sustainable development.

Original languageEnglish
Pages (from-to)219-243
Number of pages25
JournalHelgoland Marine Research
Issue number3
StatePublished - 1999


  • Fish
  • Mediterranean Sea
  • Molluscs
  • North Sea
  • Red Sea


Dive into the research topics of 'Marine molluscs and fish as biomarkers of pollution stress in littoral regions of the Red Sea, Mediterranean Sea and North Sea'. Together they form a unique fingerprint.

Cite this