Margin Analysis of the LVQ Algorithm

Koby Crammer, Ran Gilad-Bachrach, Amir Navot, Naftali Tishby

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

104 Scopus citations

Abstract

Prototypes based algorithms are commonly used to reduce the computational complexity of Nearest-Neighbour (NN) classifiers. In this paper we discuss theoretical and algorithmical aspects of such algorithms. On the theory side, we present margin based generalization bounds that suggest that these kinds of classifiers can be more accurate then the 1-NN rule. Furthermore, we derived a training algorithm that selects a good set of prototypes using large margin principles. We also show that the 20 years old Learning Vector Quantization (LVQ) algorithm emerges naturally from our framework.

Original languageEnglish
Title of host publicationNIPS 2002
Subtitle of host publicationProceedings of the 15th International Conference on Neural Information Processing Systems
EditorsSuzanna Becker, Sebastian Thrun, Klaus Obermayer
PublisherMIT Press
Pages462-469
Number of pages8
ISBN (Electronic)0262025507, 9780262025508
StatePublished - 2002
Externally publishedYes
Event15th International Conference on Neural Information Processing Systems, NIPS 2002 - Vancouver, Canada
Duration: 9 Dec 200214 Dec 2002

Publication series

NameNIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems

Conference

Conference15th International Conference on Neural Information Processing Systems, NIPS 2002
Country/TerritoryCanada
CityVancouver
Period9/12/0214/12/02

Fingerprint

Dive into the research topics of 'Margin Analysis of the LVQ Algorithm'. Together they form a unique fingerprint.

Cite this