TY - JOUR
T1 - Magnetic resonance-guided focused ultrasound surgery (MRgFUS). Four ablation treatments of a single canine hepatocellular adenoma
AU - Kopelman, Doron
AU - Inbar, Yael
AU - Hanannel, Arik
AU - Dank, Gillian
AU - Freundlich, David
AU - Perel, Azriel
AU - Castel, David
AU - Greenfeld, Adrian
AU - Salomon, Tal
AU - Sareli, Merab
AU - Valeanu, Adrian
AU - Papa, Moshe
N1 - Funding Information:
This research was partially financed by a grant from InSightec Ltd, Tirat Hacarmel, Israel. D.K. is the head of a public general surgical department and a part-time medical consultant to InSightec Ltd.
PY - 2006/8
Y1 - 2006/8
N2 - Background. Canine hepatocellular adenomas are benign, well-differentiated, primary hepatic tumors. Surgical resection is technically demanding and is considered a major procedure with relatively high morbidity rates. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) uses focused ultrasonic energy to non-invasively create a heat-coagulated lesion deep within the body. This effect can be achieved in a controlled, accurate manner. The aim of this study was to evaluate the safety, accuracy and efficacy of non-invasive focal ablation of tissue volumes of a canine benign liver tumour by consecutive MRgFUS sonications. Materials and methods. Four MRgFUS procedures were performed in a 10-year-old, male, mixed large breed dog (45 kg) under general anaesthesia. The exact location and volume of the ablated areas were planned on the MR images. Real-time MR imaging and temperature mapping enabled the immediate evaluation of the effect of each sonication. Different areas were chosen within the tumour. These volumes of tumoral tissue were ablated by multiple sonications. To allow accurate targeting and quality imaging, sonications were performed during 20-30 s of apnoea. Between the sonications the dog was normally ventilated. The dog was operated 21 days after the fourth ablative procedure. The tumour was resected and histopathologically examined. Results. The MRgFUS created necrosis with contiguous areas of complete tissue destruction within the liver tumour, in full accordance with the planning. A focal thermal injury to the cartilage of the right lower ribs was noted after the fourth treatment. This lesion became infected and was treated surgically. Ten months after the last treatment the dog is well and healthy. Conclusions. Focused ultrasound ablation of liver tumoral tissue with MR guidance under general anaesthesia and controlled apnoea is a safe and accurate treatment modality. Its main advantage is that it is a completely non-invasive image-guided treatment. The ablation of significant volumes of a highly vascular liver tumoral tissue was achieved. Such tissue can be ablated in a very accurate manner, exactly according to the pretreatment planning on the MR images. The MR imaging characteristics, including real-time temperature mapping, enable real-time control of every step of the ablation process. Mechanical ventilation with intermittent apnoea periods overcomes the problem of the respiratory movements of the liver. Care must be taken to avoid the passage of the ultrasound beam through energy-absorbing calcified tissue.
AB - Background. Canine hepatocellular adenomas are benign, well-differentiated, primary hepatic tumors. Surgical resection is technically demanding and is considered a major procedure with relatively high morbidity rates. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) uses focused ultrasonic energy to non-invasively create a heat-coagulated lesion deep within the body. This effect can be achieved in a controlled, accurate manner. The aim of this study was to evaluate the safety, accuracy and efficacy of non-invasive focal ablation of tissue volumes of a canine benign liver tumour by consecutive MRgFUS sonications. Materials and methods. Four MRgFUS procedures were performed in a 10-year-old, male, mixed large breed dog (45 kg) under general anaesthesia. The exact location and volume of the ablated areas were planned on the MR images. Real-time MR imaging and temperature mapping enabled the immediate evaluation of the effect of each sonication. Different areas were chosen within the tumour. These volumes of tumoral tissue were ablated by multiple sonications. To allow accurate targeting and quality imaging, sonications were performed during 20-30 s of apnoea. Between the sonications the dog was normally ventilated. The dog was operated 21 days after the fourth ablative procedure. The tumour was resected and histopathologically examined. Results. The MRgFUS created necrosis with contiguous areas of complete tissue destruction within the liver tumour, in full accordance with the planning. A focal thermal injury to the cartilage of the right lower ribs was noted after the fourth treatment. This lesion became infected and was treated surgically. Ten months after the last treatment the dog is well and healthy. Conclusions. Focused ultrasound ablation of liver tumoral tissue with MR guidance under general anaesthesia and controlled apnoea is a safe and accurate treatment modality. Its main advantage is that it is a completely non-invasive image-guided treatment. The ablation of significant volumes of a highly vascular liver tumoral tissue was achieved. Such tissue can be ablated in a very accurate manner, exactly according to the pretreatment planning on the MR images. The MR imaging characteristics, including real-time temperature mapping, enable real-time control of every step of the ablation process. Mechanical ventilation with intermittent apnoea periods overcomes the problem of the respiratory movements of the liver. Care must be taken to avoid the passage of the ultrasound beam through energy-absorbing calcified tissue.
KW - Hepatocellular adenoma
KW - Magnetic resonance-guided focused ultrasound surgery
KW - Treatment planning
UR - http://www.scopus.com/inward/record.url?scp=33745904423&partnerID=8YFLogxK
U2 - 10.1080/13651820500465212
DO - 10.1080/13651820500465212
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33745904423
SN - 1365-182X
VL - 8
SP - 292
EP - 298
JO - HPB
JF - HPB
IS - 4
ER -