Macrophages as novel target cells for erythropoietin

Lilach Lifshitz, Galit Tabak, Max Gassmann, Moshe Mittelman, Drorit Neumann*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

90 Scopus citations

Abstract

Background Our original demonstration of immunomodulatory effects of erythropoietin in multiple myeloma led us to the search for the cells in the immune system that are direct targets for erythropoietin. The finding that lymphocytes do not express erythropoietin receptors led to the hypothesis that other cells act as direct targets and thus mediate the effects of erythropoietin. The finding that erythropoietin has effects on dendritic cells thus led to the question of whether macrophages act as target cells for erythropoietin. Design and Methods The effects of erythropoietin on macrophages were investigated both in-vivo and in-vitro. The in-vivo studies were performed on splenic macrophages and inflammatory peritoneal macrophages, comparing recombinant human erythropoietin-treated and untreated mice, as well as transgenic mice over-expressing human erythropoietin (tg6) and their control wild-type counterparts. The in-vitro effects of erythropoietin on macrophage surface markers and function were investigated in murine bone marrow-derived macrophages treated with recombinant human erythropoietin. Results Erythropoietin was found to have effects on macrophages in both the in-vivo and in-vitro experiments. In-vivo treatment led to increased numbers of splenic macrophages, and of the splenic macrophages expressing CD11b, CD80 and major histocompatibility complex class II. The peritoneal inflammatory macrophages obtained from erythropoietin-treated mice displayed increased expression of F4/80, CD11b, CD80 and major histocompatibility complex class II, and augmented phagocytic activity. The macrophages derived in-vitro from bone marrow cells expressed erythropoietin receptor transcripts, and in-vitro stimulation with erythropoietin activated multiple signaling pathways, including signal transducer and activator of transcription (STAT)1 and 5, mitogen-activated protein kinase, phosphatidylinositol 3-kinase and nuclear factor kappa B. In-vitro erythropoietin treatment of these cells up-regulated their surface expression of CD11b, F4/80 and CD80, enhanced their phagocytic activity and nitric oxide secretion, and also led to augmented interleukin 12 secretion and decreased interleukin 10 secretion in response to lipopolysaccharide. Conclusions Our results show that macrophages are direct targets of erythropoietin and that erythropoietin treatment enhances the pro-inflammatory activity and function of these cells. These findings point to a multifunctional role of erythropoietin and its potential clinical applications as an immunomodulating agent.

Original languageEnglish
Pages (from-to)1823-1831
Number of pages9
JournalHaematologica
Volume95
Issue number11
DOIs
StatePublished - Nov 2010

Funding

FundersFunder number
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung125013

    Keywords

    • Erythropoietin receptor
    • Macrophages
    • Pro-inflammation
    • Signal transducer and activator of transcription (STAT)

    Fingerprint

    Dive into the research topics of 'Macrophages as novel target cells for erythropoietin'. Together they form a unique fingerprint.

    Cite this