TY - JOUR
T1 - Macroecological and biogeographical patterns of limb reduction in the world's skinks
AU - Camaiti, Marco
AU - Evans, Alistair R.
AU - Hipsley, Christy A.
AU - Hutchinson, Mark N.
AU - Meiri, Shai
AU - de Oliveira Anderson, Rodolfo
AU - Slavenko, Alex
AU - Chapple, David G.
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Biogeography published by John Wiley & Sons Ltd.
PY - 2023/2
Y1 - 2023/2
N2 - Aim: Limb reduction is a dramatic evolutionary transition, yet whether it is achieved in similar trajectories across clades, and its environmental drivers, remain unclear. We investigate the macroevolutionary and biogeographical patterns of limb reduction in skinks, where limb reduction occurred more often than in any other tetrapod clade, and test their associations with substrate categories using a global database. We test for habitat associations of body shapes in a group of Australian skinks using quantitative habitat data. Location: Global (Scincidae), Australia (Sphenomorphinae). Taxon: Skinks, Australian Sphenomorphinae. Materials and Methods: We use morphological data to explore the patterns of limb reduction in the world's skinks, investigating how body proportions differ across skink clades and subfamilies. We examine the relationships between body shape and substrate (coarsely classified). Further, we investigate the relationships between body shape and high-resolution soil and climate properties extracted from each species' distribution for Australian sphenomorphines. Results: Relationships between limb lengths and trunk elongation show idiosyncratic patterns across skink clades. Presacral vertebrae numbers positively correlate with trunk elongation in all taxa, except Glaphyromorphus. Skinks from sandy habitats show greater disparity between forelimb and hindlimb lengths than all other substrate categories. In sphenomorphines, shorter limbs and elongated trunks correlate with colder, more humid microhabitats and richer soils; high limb disparity correlates with hot, arid microhabitats and sandy, poor substrates. Main Conclusions: The evolutionary trajectories of limb reduction in skinks are clade-specific and sometimes unique. Selection for specific limb proportions and body sizes in limb-reduced forms changes across substrates. On poor, sandy substrates of arid environments, body shapes with longer hindlimbs may be more efficient for locomotion in a granular fluid (i.e. sand) and exploit the air–substrate interface than complete limblessness. On richer, more humid substrates, such morphology is rare, indicating that navigating cluttered substrates selects for more equal and shorter limb lengths.
AB - Aim: Limb reduction is a dramatic evolutionary transition, yet whether it is achieved in similar trajectories across clades, and its environmental drivers, remain unclear. We investigate the macroevolutionary and biogeographical patterns of limb reduction in skinks, where limb reduction occurred more often than in any other tetrapod clade, and test their associations with substrate categories using a global database. We test for habitat associations of body shapes in a group of Australian skinks using quantitative habitat data. Location: Global (Scincidae), Australia (Sphenomorphinae). Taxon: Skinks, Australian Sphenomorphinae. Materials and Methods: We use morphological data to explore the patterns of limb reduction in the world's skinks, investigating how body proportions differ across skink clades and subfamilies. We examine the relationships between body shape and substrate (coarsely classified). Further, we investigate the relationships between body shape and high-resolution soil and climate properties extracted from each species' distribution for Australian sphenomorphines. Results: Relationships between limb lengths and trunk elongation show idiosyncratic patterns across skink clades. Presacral vertebrae numbers positively correlate with trunk elongation in all taxa, except Glaphyromorphus. Skinks from sandy habitats show greater disparity between forelimb and hindlimb lengths than all other substrate categories. In sphenomorphines, shorter limbs and elongated trunks correlate with colder, more humid microhabitats and richer soils; high limb disparity correlates with hot, arid microhabitats and sandy, poor substrates. Main Conclusions: The evolutionary trajectories of limb reduction in skinks are clade-specific and sometimes unique. Selection for specific limb proportions and body sizes in limb-reduced forms changes across substrates. On poor, sandy substrates of arid environments, body shapes with longer hindlimbs may be more efficient for locomotion in a granular fluid (i.e. sand) and exploit the air–substrate interface than complete limblessness. On richer, more humid substrates, such morphology is rare, indicating that navigating cluttered substrates selects for more equal and shorter limb lengths.
KW - Australian Sphenomorphinae
KW - biogeography
KW - ecomorphology
KW - limb reduction
KW - macroecology
KW - morphological evolution
KW - skinks
UR - http://www.scopus.com/inward/record.url?scp=85144021117&partnerID=8YFLogxK
U2 - 10.1111/jbi.14547
DO - 10.1111/jbi.14547
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85144021117
SN - 0305-0270
VL - 50
SP - 428
EP - 440
JO - Journal of Biogeography
JF - Journal of Biogeography
IS - 2
ER -