TY - JOUR
T1 - Macro-mechanical material model for fiber reinforced metal matrix composites
AU - Banks-Sills, L.
AU - Leiderman, V.
PY - 1999/7
Y1 - 1999/7
N2 - The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of the model. Two cases are considered: one in which the fibers are symmetric with respect to the unit cell and one in which they are rotated by an angle of π/6 with respect to the horizontal axis. Good agreement is found between the macro-mechanical analyses and full finite element analyses of the beam. The aim here is to develop an initial macro-mechanical material model which can be extended to include more realistic aspects of the composite elasto-plastic behavior. As part of this model, a family of effective stress-effective plastic strain curves are obtained. An important aspect of this investigation is the implementation of the homogenization-localization technique for elasto-plastic material behavior of non-symmetric unit cells.
AB - The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of the model. Two cases are considered: one in which the fibers are symmetric with respect to the unit cell and one in which they are rotated by an angle of π/6 with respect to the horizontal axis. Good agreement is found between the macro-mechanical analyses and full finite element analyses of the beam. The aim here is to develop an initial macro-mechanical material model which can be extended to include more realistic aspects of the composite elasto-plastic behavior. As part of this model, a family of effective stress-effective plastic strain curves are obtained. An important aspect of this investigation is the implementation of the homogenization-localization technique for elasto-plastic material behavior of non-symmetric unit cells.
UR - http://www.scopus.com/inward/record.url?scp=0032598242&partnerID=8YFLogxK
U2 - 10.1016/S1359-8368(99)00018-9
DO - 10.1016/S1359-8368(99)00018-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0032598242
SN - 1359-8368
VL - 30
SP - 443
EP - 452
JO - Composites Part B: Engineering
JF - Composites Part B: Engineering
IS - 5
ER -