TY - JOUR
T1 - Mössbauer and resistivity studies of the magnetic and electronic properties of the high-pressure phase of Fe3O4
AU - Xu, W. M.
AU - Machavariani, G. Yu
AU - Rozenberg, G. Kh
AU - Pasternak, M. P.
N1 - Funding Information:
This research was supported in part by Israeli Science Foundation Grant Nos. 36/00-3 and 40/02.
PY - 2004/11
Y1 - 2004/11
N2 - The high-pressure phase of magnetite, h-Fe3O4, has been studied by Mössbauer spectroscopy, and electrical conductivity to pressure of 140 GPa and in the 5-573 K temperature range. Mössbauer studies following annealing at 573 K and 34 GPa reveal three equal-abundant iron species within two magnetic sublattices, I and II: Fe3+(I) sublattice with hyperfine field typical of six-coordinated ferric ions and magnetic ordering temperature TM(I)>600 K at 34 GPa and a combined Fe 3+(II) and Fe2+ species forming a magnetic sublattice II with TM(II) ∼300 K at 34 GPa. Starting at 50 GPa the Fe 3+(I) moment gradually collapses becoming nonmagnetic at P > 80 GPa. This moment collapse is explained in terms of a charge-transfer d-p gap closure mechanism. TM(II) decreases with pressure, and to 120 GPa, the highest pressure reached with Mössbauer spectroscopy, Fe 3+(II) remains magnetically ordered. Resistance studies with a nonannealed and highly stoichiometric sample at 300 K reveal a sharp increase in R at the onset of the h-Fe3O4 phase (P > 25 GPa), reaching a 25-fold maximum at ∼45 GPa, after which it shows a precipitous decrease in the 45-70 GPa range after which it decreases gradually with pressure reaching 10-fold reduction at 140 GPa. The sharp increase in R is attributed to a gap opening once h-Fe3O4 is formed. Starting at P > 50 GPa, coinciding with partial correlation breakdown of the Fe3+(I) sublattice, a sluggish onset of metallization is observed manifested by a positive dR/dt.
AB - The high-pressure phase of magnetite, h-Fe3O4, has been studied by Mössbauer spectroscopy, and electrical conductivity to pressure of 140 GPa and in the 5-573 K temperature range. Mössbauer studies following annealing at 573 K and 34 GPa reveal three equal-abundant iron species within two magnetic sublattices, I and II: Fe3+(I) sublattice with hyperfine field typical of six-coordinated ferric ions and magnetic ordering temperature TM(I)>600 K at 34 GPa and a combined Fe 3+(II) and Fe2+ species forming a magnetic sublattice II with TM(II) ∼300 K at 34 GPa. Starting at 50 GPa the Fe 3+(I) moment gradually collapses becoming nonmagnetic at P > 80 GPa. This moment collapse is explained in terms of a charge-transfer d-p gap closure mechanism. TM(II) decreases with pressure, and to 120 GPa, the highest pressure reached with Mössbauer spectroscopy, Fe 3+(II) remains magnetically ordered. Resistance studies with a nonannealed and highly stoichiometric sample at 300 K reveal a sharp increase in R at the onset of the h-Fe3O4 phase (P > 25 GPa), reaching a 25-fold maximum at ∼45 GPa, after which it shows a precipitous decrease in the 45-70 GPa range after which it decreases gradually with pressure reaching 10-fold reduction at 140 GPa. The sharp increase in R is attributed to a gap opening once h-Fe3O4 is formed. Starting at P > 50 GPa, coinciding with partial correlation breakdown of the Fe3+(I) sublattice, a sluggish onset of metallization is observed manifested by a positive dR/dt.
UR - http://www.scopus.com/inward/record.url?scp=12244268657&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.70.174106
DO - 10.1103/PhysRevB.70.174106
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:12244268657
SN - 0163-1829
VL - 70
SP - 1
EP - 6
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 17
M1 - 174106
ER -