Abstract
A general class of lower bounds on the mean square error (mse) in random parameter estimation is formulated. These bounds are generated using functions of the parameter and the data that are orthogonal to the data. Aparticular choice in the class yields a new lower bound which is superior to both the Cramer-Rao and Bobrovsky-Zakai lower bounds.
Original language | English |
---|---|
Title of host publication | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking |
Publisher | Wiley-IEEE Press |
Pages | 166 |
Number of pages | 1 |
ISBN (Electronic) | 9780470544198 |
ISBN (Print) | 0470120959, 9780470120958 |
DOIs | |
State | Published - 1 Jan 2007 |
Keywords
- Diffusion processes
- Estimation error
- Filtering
- Mean square error methods
- Modulation
- Oceans
- Parameter estimation