Abstract
The problem of modulating the value of a parameter onto a band-limited signal to be transmitted over a continuous-time, additive white Gaussian noise (AWGN) channel, and then estimating this parameter at the receiver, is considered. The performance is measured by the mean power-α error (MPαE), which is defined as the worst case αth-order moment of the absolute estimation error. The optimal exponential decay rate of the MPαE as a function of the transmission time is investigated. Two upper (converse) bounds on the MP αE exponent are derived, on the basis of known bounds for the AWGN channel of inputs with unlimited bandwidth. The bounds are computed for typical values of the error moment and the signal-to-noise ratio (SNR), and the SNR asymptotics of the different bounds are analyzed. The new bounds are compared with known converse and achievability bounds, which were derived from channel coding considerations.
Original language | English |
---|---|
Article number | 7869423 |
Pages (from-to) | 3854-3874 |
Number of pages | 21 |
Journal | IEEE Transactions on Information Theory |
Volume | 63 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2017 |
Externally published | Yes |
Keywords
- Additive white Gaussian noise (AWGN)
- bandwidth constraints
- error exponents
- modulation
- parameter estimation
- reliability function