Lower bounds for approximating graph parameters via communication complexity

Talya Eden, Will Rosenbaum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In a celebrated work, Blais, Brody, and Matulef [7] developed a technique for proving property testing lower bounds via reductions from communication complexity. Their work focused on testing properties of functions, and yielded new lower bounds as well as simplified analyses of known lower bounds. Here, we take a further step in generalizing the methodology of [7] to analyze the query complexity of graph parameter estimation problems. In particular, our technique decouples the lower bound arguments from the representation of the graph, allowing it to work with any query type. We illustrate our technique by providing new simpler proofs of previously known tight lower bounds for the query complexity of several graph problems: Estimating the number of edges in a graph, sampling edges from an almost-uniform distribution, estimating the number of triangles (and more generally, r-cliques) in a graph, and estimating the moments of the degree distribution of a graph. We also prove new lower bounds for estimating the edge connectivity of a graph and estimating the number of instances of any fixed subgraph in a graph. We show that the lower bounds for estimating the number of triangles and edge connectivity also hold in a strictly stronger computational model that allows access to uniformly random edge samples.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 21st International Workshop, APPROX 2018, and 22nd International Workshop, RANDOM 2018
EditorsEric Blais, Jose D. P. Rolim, David Steurer, Klaus Jansen
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Print)9783959770859
DOIs
StatePublished - 1 Aug 2018
Event21st International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2018 and the 22nd International Workshop on Randomization and Computation, RANDOM 2018 - Princeton, United States
Duration: 20 Aug 201822 Aug 2018

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume116
ISSN (Print)1868-8969

Conference

Conference21st International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2018 and the 22nd International Workshop on Randomization and Computation, RANDOM 2018
Country/TerritoryUnited States
CityPrinceton
Period20/08/1822/08/18

Keywords

  • Communication Complexity
  • Lower Bounds
  • Sublinear Graph Parameter Estimation

Fingerprint

Dive into the research topics of 'Lower bounds for approximating graph parameters via communication complexity'. Together they form a unique fingerprint.

Cite this