TY - CHAP
T1 - Lower bound on the achievable dsp performance for localizing steplike continuous signals in noise
AU - Bartov, Avishai
AU - Messer, Hagit
N1 - Publisher Copyright:
© 2007 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
PY - 2007/1/1
Y1 - 2007/1/1
N2 - Estimating the time of arrival (TOA) of step-like signals (e.g., a rectangular pulse), which are, theoretically, of infinite bandwidth, is essential for many applications. In modern signal processing, the TOA estimator is implemented by digital signal processing (DSP) techniques. Existing tools for studying the TOA estimation performance do not take into consideration the estimation error caused by the finite sampling rate of the system. In this paper, we present a new Cramér-Rao type lower bound that is used to evaluate the achievable performance of TOA estimation in a given processing sampling rate. We use it to refer to the important question of what processing sampling rate to use when localizing a step-like signal. We show that for a given signal-to-noise ratio (SNR), there exists a certain sampling rate threshold beyond which performance does not improve by increasing the sampling rate, and we show how to find it.
AB - Estimating the time of arrival (TOA) of step-like signals (e.g., a rectangular pulse), which are, theoretically, of infinite bandwidth, is essential for many applications. In modern signal processing, the TOA estimator is implemented by digital signal processing (DSP) techniques. Existing tools for studying the TOA estimation performance do not take into consideration the estimation error caused by the finite sampling rate of the system. In this paper, we present a new Cramér-Rao type lower bound that is used to evaluate the achievable performance of TOA estimation in a given processing sampling rate. We use it to refer to the important question of what processing sampling rate to use when localizing a step-like signal. We show that for a given signal-to-noise ratio (SNR), there exists a certain sampling rate threshold beyond which performance does not improve by increasing the sampling rate, and we show how to find it.
KW - Digital signal processing
KW - Estimation error
KW - Filtering theory
KW - Matched filters
KW - Signal to noise ratio
UR - http://www.scopus.com/inward/record.url?scp=85036551291&partnerID=8YFLogxK
U2 - 10.1109/9780470544198.ch44
DO - 10.1109/9780470544198.ch44
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
AN - SCOPUS:85036551291
SN - 0470120959
SN - 9780470120958
SP - 502
EP - 508
BT - Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking
PB - Wiley-IEEE Press
ER -